Lim Y, Koo J. Chaotic analysis of partial discharge (CAPD) -a novel approach to identify the nature of PD source[C]. Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 2001: 324-328.
[2]
骆振华. 时间序列分析引论[M]. 厦门: 厦门大学出版社, 1987.
[3]
Grassberger P, Procaccia I. Measuring the strangeness of strange attractors[J]. Physica D, 1983, 9(1/2): 189-208.
[4]
Grebogi C, Ott E, Yorke J A. Final state sensitivity an obstruction to predictability[J]. Phys. Lett. A, 1983, 99: 415-419.
[5]
司文荣, 李军浩, 袁鹏, 等. 基于波形非线性映射的多局部放电脉冲群快速分类[J]. 电工技术学报, 2009, 24(3): 216-221, 228. Si Wenrong, Li Junhao, Yuan Peng, et al. The fast grouping technique of PD sequence based on the nonlinear mapping of pulse shapes[J]. Transactions of China Electrotechnical society, 2009, 24(3): 216-221, 228.
[6]
Sahoo N C, Salama M M A, Bartnikas R. Trends in partial discharge pattern classification: a survey[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(2): 248-264.
[7]
Mazroua A A, Salama M M A, Bartnikas R. PD pattern recognition with neural networks using the multilayer perceptron technique[J]. IEEE Transactions on Electrical Insulation, 1993, 28; 1082-1089.
[8]
Cavallini A, Montanari G C, Contin A, et al. A new approach to the diagnosis of soild insulation systems based on PD signal inference[J]. IEEE Electrical Insulation Magazine, 2003, 19(2): 23-30.
[9]
Lim Y, Chaotic Koo J. Analysis of partial discharge (CAPD) as a novel approach to investigate insulation degradation caused by the various defects[C]. Procee- dings of the IEEE International Symposium on Industrial Electronics, Pusan, Korea, 2001.
[10]
Hao L, Lewin P L. Partial discharge source discri- mination using a support vector machine[J]. IEEE Transactions on Dielectric Electrical Insulation, 2010, 17(1): 189-197.
[11]
张晓星, 孙才新, 唐炬, 等. 基于统计不相关最优鉴别矢量集的GIS局部放电模式识别[J]. 电力系统自动化, 2006, 30(5): 59-62. Zhang Xiaoxing, Sun Caixin, Tang Ju, et al. PD pattern recognition based on optimal sets of statistical uncorrelated discriminant vectors in GIS[J]. Automation of Electric Power Systems, 2006, 30(5): 59-62.
罗勇芬, 黄平, 李彦明. 油纸绝缘中局部放电时间序列的混沌特性及其模式识别[J]. 西安交通大学学报, 2010, 44(12): 55-60. Luo Yongfen, Huang Ping, Li Yanming. Chaotic characteristics of partial discharges time series in oil-paper insulation with applications to pattern recognition[J]. Journal of Xi’an Jiaotong University, 2010, 44(12): 55-60.
[14]
Boeck W, et al. Diagnostic methods for GIS insulating systems[C]. CIGRE: 1992 Session, Paris: 151-182.
[15]
Wolf A, Swift J B, Swinney H L, et al. Determining lyapunov exponents from time series[J]. Physica, 1985, D16: 285-317.
[16]
杨钟瑾. 核函数支持向量机[J]. 计算机工程与应用, 2008, 44(33): 1-6, 24. Yang Zhongjin. Kernel-based support vector machines [J]. Computer Engineering and Applications, 2008, 44(33): 1-6, 24.
[17]
姜磊, 朱德恒, 李福琪, 等. 基于人工神经网络的变压器绝缘模型放电模式识别的研究[J]. 中国电机工程学报, 2001, 21(1): 21-24. Jiang Lei, Zhu Deheng, Li Fuqi, et al. ANN based discharge pattern recognition of insulation models of electrical transformers[J]. Proceedings of the CSEE, 2001, 21(1): 21-24.
[18]
Satish L, Zaengl W S. Can fractal features be used for recognizing 3-D partial discharge patterns?[J]. IEEE Transactions on Electrical Insulation, 1995, 2: 352- 359.
[19]
Gulski E. Application of modern PD detection tech- niques to fault recognition in the insulation of high voltage equipment[C]. 9th International Symposium on High Voltage Engineering, Graz, Austria, 1995: 5642.
[20]
张周胜, 马爱清, 盛戈皞, 等. 高压交联聚乙烯电缆局部放电脉冲的时频特性识别方法[J]. 高电压技术, 2011, 37(8): 1997-2003. Zhang Zhousheng, Ma Aiqing, Sheng Gehao. Time- frequency characteristic based partial discharge pulses identification technique for the high voltage XLPE power cables[J]. High Voltage Engineering, 2011, 37(8): 1997-2003.