全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种新的混合矢量磁滞模型磁滞算子定义方法

, PP. 15-21

Keywords: S-W模型,混合矢量磁滞模型,磁滞算子,交变磁化,旋转磁化

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种新的磁滞算子定义方法,从能量角度定性分析了单畴单轴各向异性椭圆形磁性粒子的特性及其磁化方向的判定法则,借助于磁性粒子矢量场等势线分别给出了各向异性和各向同性材料的磁滞算子临界面方程,把磁滞算子定义为等势线包围的封闭区域,给出了磁滞算子的磁化方向判定方法。定义的磁滞算子满足第二热力学定律,具有能够描述磁滞现象的损耗特性和擦除特性,符合描述磁滞特性的Mandelung定则。

References

[1]  Coleman B D, Hodgdon M L. A constitutive relation for rate-independent hysteresis in ferro-magnetically soft materials[J]. International Journal of Engineering Science, 1986, 24(6): 897-919.
[2]  Stoner E C, Wohlfarth E P. A mechanism of magnetic hysteresis in heterogeneous alloys[J]. IEEE Transactions on Magnetics, 1991, 27(4): 3475-3518.
[3]  Jiles D C, Atherton D L. Theory of ferromagnetic hysteresis[J]. Journal of Magnetism and Magnetic Materials, 1986, 61(1): 48-60.
[4]  Mayergoyz I D. Mathematical models of hysteresis [M]. New York: Springer Verlag, 1991.
[5]  Della Torre E. Magnetic hysteresis[M]. New York: IEEE Press, 1999.
[6]  Michelakis C, Litsardakis G, Samaras D. A contribu- tion to 2D vector preisach modelling[J]. Journal of Magnetism and Magnetic Materials, 1996, 157: 347- 348.
[7]  Koh C S, Hahn S, Park G S. Vector hysteresis modeling by combining stoner-wohlfarth and preisach models [J]. IEEE Transactions on Magnetics, 2000, 36(4): 1254-1257.
[8]  Della Torre E, Pinzaglia E, Cardelli E. Vector modeling- part I: Generalized hysteresis model[J]. Physica B: Condensed Matter, 2006, 372(1): 111-114.
[9]  Cardelli E. A general hysteresis operator for the mode- ling of vector fields[J]. IEEE Transactions on Magnetics, 2011, 47(8): 2056-2067.
[10]  Cardelli E, Della Torre E, Faba A. A general vector hysteresis operator: Extension to the 3-D case[J]. IEEE Transactions on Magnetics, 2010, 46(12): 3990-4000.
[11]  Preisach F. Über die magnetische nachwirkung[J]. Zeitschrift Für Physik, 1935, 94(5-6): 277-302.
[12]  Della Torre E, Pinzaglia E, Cardelli E. Vector modeling- part II: ellipsoidal vector hysteresis model, numerical application to a 2D case[J]. Physica B: Condensed Matter, 2006, 372(1): 115-119.
[13]  Della Torre E, Cardelli E. A preisach-stoner-wohlfarth vector model[J]. IEEE Transactions on Magnetics, 2006, 42(10): 3126-3128.
[14]  Kahler G R, Della Torre E, Cardelli E. Implementation of the preisach-stoner-wohlfarth classical vector model [J]. IEEE Transactions on Magnetics, 2010, 46(1): 21-28.
[15]  Cardelli E, Della Torre E, Pinzaglia E. Magnetic energy and radial vector model of hysteresis[J]. Journal of Applied Physics, 2006, 99(8): 08D703-08D703-3.
[16]  Della Torre E, Cardelli E, Bennett L H. Identifying hysteresis losses in magnetic media[J]. IEEE Transac- tions on Magnetics, 2010, 46(11): 3844-3847.
[17]  Della Torre E, Bennett L H, Jin Y. An effect of particle size on the behavior of ferromagnetic materials [J]. Journal of Magnetism and Magnetic Materials, 2012, 324(14): 2189-2192.
[18]  Cardelli E, Della Torre E, Faba A. Properties of a class of vector hysteron models[J]. Journal of Applied Physics, 2008, 103(7): 07D927-07D927-3.
[19]  Cardelli E, Della Torre E, Faba A. Analysis of a unit magnetic particle via the DPC model[J]. IEEE Transac- tions on Magnetics, 2009, 45(11): 5192-5195.
[20]  Cardelli E, Della Torre E, Faba A. Numerical imple- mentation of the DPC model[J]. IEEE Transactions on Magnetics, 2009, 45(3): 1186-1189.
[21]  Mandelung E. On the magnetization by fast current and an operation principle of the magneto-detectors of rut herford-marconi[J]. Ann Phys, 1905, 17: 861-890.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133