袁涛, 雷超平, 司马文霞, 等. 提高接地极散流效率的冲击接地降阻分析[J]. 电工技术学报, 2012, 27(11): 278-284. Yuan Tao, Lei Chaoping, Sima Wenxia, et al. Analysis of grounding resistance reduction effect based on enhancing impulse current leakage efficiency[J]. Transactions of China Electrotechnical Society, 2012, 27(11): 278-284.
[2]
Dawalibe F, Mukhedkar D. Optimum design of substation grounding in two-layer earth structure, part I, II, Ⅲ[J]. IEEE Transactions Power Apparatus and Systems, 1975, 94(2): 252-272.
[3]
Qi Lei, Cui Xiang, Zhao Zhibin, et al. Grounding performance analysis of the substation grounding grids by finite element method in frequency domain[J]. IEEE Transactions on Magnetics, 2007, 43(4): 1181- 1184.
[4]
Lorentzou M I, Hatziargyriou N D, Papadias B C. Time domain analysis of grounding electrodes impulse response[J]. IEEE Transactions on Power Delivery, 2003, 18(2): 517-524.
[5]
He Jinliang, Gao Yanqing, Zeng Rong. Effective length of counterpoise wire under lightning current[J]. IEEE Transactions on Power Delivery, 2005, 22(2): 1585-1591.
[6]
司马文霞, 雷超平, 袁涛, 等. 改善冲击散流时地中电场分布的接地降阻试验[J]. 高电压技术, 2011, 37(9): 2294-2301. Sima Wenxia, Lei Chaoping, Yuan Tao, et al. Experi- mental study on grounding resistance reduction based on improved grounding electric field distribution induced by the diffuser of impulse current[J]. High Voltage Engineering, 2011, 37(9): 2294-2301.
[7]
杨琳, 吴广宁, 曹晓斌, 等. 接地体雷电暂态响应建模分析[J]. 中国电机工程学报, 2011, 31(13): 142-146. Yang Lin, Wu Guangning, Cao Xiaobin, et al. Modeling of grounding electrode for lightning transient response analysis[J]. Proceedings of the CSEE, 2011, 31(13): 142-146.
[8]
Grcev Leonid D, Heimbach Markus. Frequency dependent and transient characteristics of substation grounding systems[J]. IEEE Transactions on Power Systems, 1997, 12(1): 172-178.
[9]
俞集辉, 孟庆福. 线性有限元计算的外推插值法[J]. 电工技术学报, 1995, 10(3): 37-42. Yu Jihui, Meng Qingfu. Finite element method of extrapolation and interpolation[J]. Transactions of China Electrotechnical Society, 1995, 10(3): 37-42.
[10]
Habjanic Anton, Trlep Mladen. The simulation of the soil ionization phenomenon around the grounding system by the finite element method[J]. IEEE Transac- tions on Magnetic, 2006, 42(4): 867-870.
[11]
Tesche F M, Lanoz M V, Torbjorn Karlsson. EMC analysis methods and computational models[M]. New York: John Wiley &Sons, 1996.
[12]
Selby A, Dawalibi F. Determination of current distribu- tion in energized conductors for the computation of electromagnetic fields[J]. IEEE Transactions on Power Delivery, 1994, 9(2): 1069-1078.
[13]
Leonid Grcev, Farid Dawalibi. An electromagnetic model for transients in grounding system[J]. IEEE Transactions on Power Systems, 1990, 5(4): 1773- 1781.
[14]
Leonid Grcev. Computer analysis of transient voltages in large grounding systems[J]. IEEE Transactions on Power Systems, 1996, 11(2): 815-823.
[15]
甄永赞, 崔翔, 罗兆楠, 等. 直流输电线路三维合成电场计算的有限元方法[J]. 电工技术学报, 2011, 26(4): 153-160. Zhen Yongzan, Cui Xiang, Luo Zhaonan, et al. FEM for 3D total electric field calculation near HVDC lines[J]. Transactions of China Electrotechnical Society, 2011, 26(4): 153-160.
[16]
Nekhoul B, Guerin C, Labie P, et al. A finite element method for calculating the electromagnetic fields generated by substation grounding systems[J]. IEEE Transactions on Magnetics, 1995, 31(3): 2150-2153.
[17]
Stochniol A. A general transformation for open boundary finite element method for electromagnetic problems[J]. IEEE Transactions on Magnetics, 1992, 28(2): 1679-1681.
[18]
Mousa A M. The soil ionization gradient associated with discharge of high currents into concentrated electrodes[J]. IEEE Transactions on Power Delivery, 1994, 9(3): 1669-1677.