全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于近似熵的磁刺激穴位脑功络构建与分析

, PP. 31-38

Keywords: 脑电信号,磁刺激,内关穴,脑功能网络,近似熵

Full-Text   Cite this paper   Add to My Lib

Abstract:

针灸是基于传统中医的理论,经临床实践已证明其疗效,然而其作用机制仍不清楚。磁刺激穴位为研究针灸理论提供了一种新的方法。基于图论的复杂网络的构建和分析方法可以帮助研究脑功能网络的拓扑结构和理解大脑的工作机制。在该研究中,通过磁刺激内关穴(PC6)采集EEG信号;运用非线性动力学方法(近似熵)和复杂网络理论,基于磁刺激内关穴的脑电信号构建脑功能网络并对脑功能网络进行分析;对比分析了安静和磁刺激两种状态下的脑功能网络的拓扑性质。实验结果表明,基于刺激内关穴构建的脑功能网络,其拓扑结构发生了改变,网络连接增强,信息传输效率提高,并且“小世界”属性增强。

References

[1]  刘洪广, 周琳, 顾靖, 等. 中枢神经的无创性磁刺激技术及其应用[J]. 生物医学工程学杂志, 2001, 18(2): 290-295. Liu Hongguang, Zhou Lin, Gu Jing, et al. The technical method for noninvasive magnetic stimulation of nerve center and its clinical application[J]. Journal of Biomedical Engineering, 2001, 18(2): 290-295.
[2]  Chang S, Chang Z G, Li S J, et al. Effects of acupunc- ture at neiguan(PC6) on electroencephalogram[J]. The Chinese Journal of Physiology, 2009, 52(1): 1-7.
[3]  H L Yu, G Z Xu, Q Zhou, et al. EEG characteristics under magnetic stimulation at acupuncture point and at mock point[J]. IEEE Transactions on Magnetic, 2012, 48(11): 2857-2860.
[4]  尹宁, 徐桂芝, 周茜. 磁刺激穴位复杂脑功能网络构建与分析[J]. 物理学报, 2013, 62(11): 118704. Yin Ning, Xu Guizhi, Zhou Qian. Construction and analysis of complex brain functional network under acupoint magnetic stimulation[J]. Acta Phys. Sin., 2013, 62(11): 118704.
[5]  Shalbaf R, Behnam H, Sleigh J, et al. Measuring the effects of sevoflurane on electroencephalogram using sample entropy[J]. Acta Anaesthesiologica Scan- dinavica, 2012, 56(7): 880-889.
[6]  Daneshyari M, Kamkar L L, Daneshyari M. Epileptic EEG: a comprehensive study of nonlinear behavior[J]. Advances in Computational Biology, 2010, 680: 677-683.
[7]  梁夏, 王金辉, 贺永. 人脑连接组研究: 脑结构网络和脑功能网络[J]. 科学通报, 2010, 55(16): 1565- 1583. Liang Xia, Wang Jinhui, He Yong. Human connec- tome: Structural and functional brain networks[J]. Chinese Science Bull, 2010, 55(16): 1565-1583.
[8]  孙俊峰, 洪祥飞, 童善保. 复杂脑网络研究进展——结构、功能、计算与应用[J]. 复杂系统与复杂性科学, 2010, 7(4): 74-87. Sun Junfeng, Hong Xiangfei, Tong Shanbao. A survey of complex brain networks: structure, function, com- putation, and applications[J]. Complex Systems and Complexity Science, 2010, 7(4): 74-87.
[9]  He Y, Chen Z J, Evans A C. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI[J]. Cereb Cortex, 2007, 17(10): 2407-2419.
[10]  Supekar K, Menon V, Rubin D, et al. Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease[J]. PLoS Computational Biology, 2008, 4(6): e1000100.
[11]  Britz J, Ville D V D, Michel C M. BOLD correlates of EEG topography reveal rapid resting-state network dynamics[J]. NeuroImage, 2010, 52(4): 1162-1170.
[12]  Chen A C N, Feng W J, Zhao H X, et al. EEG default mode network in the human brain: spectral regional field powers[J]. NeuroImage, 2008, 41(2): 561-574.
[13]  Yu H P, Yung H W, Sheng F L, et al. Fast com- putation of sample entropy and approximate entropy in biomedicine[J]. Computer Methods and Programs in Biomedicine, 2011, 104(3): 382-396.
[14]  李营, 陈帅, 王丽. 基于近似熵和样本熵的思维脑电信号分析对比[J]. 重庆工商大学学报(自然科学版), 2013, 30(6): 44-47. Li Ying, Chen Shuai, Wang Li. Analysis and com- parison of mental EEG signal based on approximate entropy and sample entropy[J]. Journal of Chongqing Technology and Business (Natural Sciences Edition), 2013, 30(6): 44-47.
[15]  Watts D J, Strogatz S H. Collective dynamics of “small-world” networks[J]. Nature, 1998, 393(6684): 440-442.
[16]  Humphries M D, Gurney K, Prescott T J. The brainstem reticular formation is a small world, not scale-free, network[J]. Proceedings of the Royal Society B: Biological Sciences, 2006, 273(1585): 503-511.
[17]  黄文涛, 冯又层. 静息态人脑功能网络的小世界特性[J]. 中南民族大学学报, 2011, 30(3): 57-60. Huang W T, Feng Y C. Small-world properties of resting state human brain functional networks[J]. Journal of South-Central University for Nationalities, 2011, 30(3): 57-60.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133