全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

绝缘纸中水分扩散及其对绝缘纸机械性响的仿真研究

, PP. 338-346

Keywords: 扩散,相互作用,机械性能,链间距

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用分子动力学方法绝缘纸中水分的扩散其及影响因素和水分对绝缘纸的机械性能时行了研究。模拟结果表明,不同水分含量的扩散系数受水分与纤维素的相互作用、相对自由体积共同影响。水分的扩散系数与水分和纤维素的相互作用及每个水分子与纤维素形成的氢键数表现出了极强的相关性,而与相对自由体积的相关性并不强。水分的加入使纤维素材料的机械性能在逐步的下降,而塑性增加。随着水分含量的增加,纤维素内聚能密度和溶解度参数均在减小,与纤维素的力学参数的变化规律相似。通过对链间距的分析发现,随着水分的增加,链间距在增大,表明水分弱化了纤维素分子间作用,从而导致了纤维素材料整体的机械性能的下降。

References

[1]  Prevost T A, Oommen T V. Cellulose insulation in oil-filled power transformers: part I-history and develop- ment[J]. IEEE Electrical Insulation Magazine, 2006, 22(1): 28-35.
[2]  Oommen T V, Thomas A P. Cellulose insulation in oil-filled power transformers: part II-maintaining insulation integrity and life[J]. IEEE Electrical Insula- tion Magazine, 2006, 22(2): 5-14.
[3]  Guo Yilu, Wu Peiyi. Investigation of the hydrogen- bond structure of cellulose diacetate by two-dimen- sional infrared correlation spectroscopy[J], Carbohydrate Polymers, 2008, 74(3): 509-513
[4]  Hinterstoisser B, Akerholm M, Lennart Salmen L. Load distribution in native cellulose[J]. Biomacro- molecules, 2003, 4(5): 1232-1237
[5]  LeNeveu D M, Rand R P, Parsegian V A. Measurement of forces between lecithin bilayers[J]. Nature, 1976, 259(5544): 601-603.
[6]  Lee S H, Rossky P J. A comparison of the structure and dynamics of liquid water at hydrophobic and hydrophilic surfaces - a molecular dynamics simulation study[J]. Journal of Chemical Physics, 1994, 100(4): 3334-3345.
[7]  Heiner A P, Teleman O. Interface between monoclinic crystalline cellulose and water: breakdown of the odd/even duplicity[J]. Langmuir, 1997, 13(3): 511- 518.
[8]  Heiner A P, Kuutti L, Teleman O. Comparison of the interface between water and four surfaces of native crystalline cellulose by molecular dynamics simulations [J]. Carbohydrate Research, 1998, 306(1-2): 205-220.
[9]  Lundgaard L E, Hansen W, Linhjell D. Ageing of oil-impregnated paper in power transformers[J]. IEEE Transactions on Power Delivery, 2004, 19(1): 230- 239.
[10]  Mazeau K, Heux L. Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose[J]. Journal of Physical Chemistry B, 2003, 107(10): 2394-2403.
[11]  Chen W, Lickfield G C, Charles Q Y. Molecular modeling of cellulose in amorphous state: part 1: model building and plastic deformation study[J]. Polymer, 2004, 45(3): 1063-1071.
[12]  Chen W, Lickfield G C, Charles Q Y. Molecular modeling of cellulose in amorphous state: part 2: effects of rigid and flexible crosslinks on cellulose[J]. Polymer, 2004, 45(3): 7357-7365.
[13]  Theodorou D N, Suter U W. Detailed molecular structure of a vinyl polymer glass[J]. Macromolecules, 1985, 18(7): 1467-1478.
[14]  Brandrup J, Immergut E H, Grulke E A. Polymer handbook[M]. New York: Wiley-Interscience Publica- tion, 1999.
[15]  Maple J, Dinur U, Hagler A T. Derivation of forcefields for molecular mechanics and dynamics from ab initio energy surfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85(15): 5350-5354.
[16]  Maple J R, Hwang M J, Stockfisch T P, et al. Deriva- tion of class II force fields. 1. methodology and quantum forcefield for the alkyl functional group and alkane molecules[J]. Journal of Computational Chemistry, 1994, 15(2): 162-182.
[17]  Maple J R, Hwang M J, Stockfisch T P, et al.
[18]  Derivation of class II forcefields. 3. characterization of a quantum forcefield for the alkanes[J]. Israel Journal of Chemistry, 1994, 34(2): 195 -231.
[19]  Sun H, Mumby S J, Maple J R, Hagler A T. An ab initio CFF93 all-atom forcefield for polycarbonates[J]. Journal of the American Chemical Society, 1994, 116(7): 2978-2987.
[20]  Sun H. Ab initio calculations and forcefield develop- ment for computer simulation of polysilanes[J]. Macro- molecules, 1995, 28(3): 701-712.
[21]  Mayo S L, Olafson B D, Goddard W A. Dreiding: a generic forcefield for molecular simulations[J]. Journal of Physical Chemistry, 1990, 94(26): 8897-8909.
[22]  Andrea T A, Swope W C, Andersen H C. The role of long ranged forces in determining the structure and properties of liquid water[J]. Journal of Physical Chemistry, 1983, 79(9): 4576-4581.
[23]  Berendsen H J C, Postma J P M, Funsteren W F. Molecular dynamics with coupling to an external bath[J]. Journal of Physical Chemistry, 1984, 81(8): 3684-3693.
[24]  Ewald P P. Die berechnung optischer und elektros- tatischer gitterpotentiale[J]. Annalen der Physik, 1921, 369(3): 253-287.
[25]  Materials Studio 4.0, discover/accelrys: San Diego, Ca, 2005.
[26]  Hildebrand J H, Scott R L. The solubility of nonelec- trolytes[M]. 3rd ed. New York: Reinhold, 1950.
[27]  Hansen C M. 50 years with solubility parameters-past and future[J]. Progress in Organic Coatings, 2004, 51(1): 77-84.
[28]  Utracki L A. Polymer alloys and blends[M]. Munich: Hanser, 1989.
[29]  Fried J R, Sadat Akhavi M, Mark J E. Molecular simulation of gas permeability poly (2, 6-dimethyl-1, 4-phenylene oxide)[J]. Journal of Membrane Science, 1998, 149(1): 115-126.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133