全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

棒-板电极直流负电晕放电脉冲过程中子特性研究

, PP. 319-329

Keywords: 负电晕放电,数值计算,电子温度,电子密度,产生和消散特性

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了揭示负电晕放电过程的电子特性,本文对棒-板间距3.3mm,施加电压-5.0kV,大气压强1.0atm(1atm=101325Pa),环境温度300K时的空气(N2O2=41)负电晕放电微观过程进行数值计算,该过程主要通过求解改进的电子连续性方程、电子平均能量方程、重粒子连续性方程和泊松方程实现,计算结果表明单次脉冲的波形特性和实验结果符合较好。文中选取单次脉冲持续周期内的6个典型时间点对负电晕放电过程中的电子特性进行详细描述,结果表明电子温度的最大值出现在场致电离区,随着放电时间的发展由阴极向阳极移动,温度值也随之减小。电子密度在阴极鞘内近似为0,在阴极鞘外层具有最大值,随着放电时间的增加,电子分布区域由阴极向阳极扩展,并且棒-板间隙内的电子密度逐渐增加。R1和R2分别为与N2和O2有关的碰撞电离反应,是电子增殖的主要过程,在整个放电过程中R1和R2的反应速率几乎保持一致;R17是涉及N2、N2+和电子的三体复合反应,在电子消散过程中占绝对优势。

References

[1]  欧阳科文, 崔翔, 焦重庆, 等. 一种分裂导线直流电晕起晕电压的计算方法[J]. 电工技术学报, 2013, 28(3): 177-182. Ouyang Kewen, Cui Xiang, Jiao Chongqing, et al. A novel calculation method for dc corona onset voltage of bundle conductors[J]. Transactions of China Electrotechnical Society, 2013, 28(3): 177-182.
[2]  刘云鹏, 朱雷, 律方成, 等. 特高压电晕笼直流分裂导线正极性电晕起始特性分析[J]. 电工技术学报, 2013, 28(1): 73-79. Liu Yunpeng, Zhu Lei, Lü Fangcheng, et al. Analysis of the positive corona onset characteristic of the bundle conductors in the UHV corona cage[J]. Transac- tions of China Electrotechnical Society, 2013, 28(1): 73-79.
[3]  Feng Fada, Ye Ling, Liu Ji, et al. Non-thermal plasma generation by using back corona discharge on catalyst [J]. Journal of Electrostatics, 2013, 71(3): 179-184.
[4]  舒印彪, 张文亮. 特高压输电若干关键技术研究[J]. 中国电机工程学报, 2007, 27(31): 1-6. Shu Yinbiao, Zhang Wenliang. Research of key technologies for UHV transmission[J]. Proceedings of the CSEE, 2007, 27(31): 1-6.
[5]  廖敏夫, 段雄英, 李劲. 同轴电极脉冲电晕放电形态的研究[J]. 电工技术学报, 2002, 17(4): 26-30. Liao Minfu, Duan Xiongying, Li Jin. Research on modality of pulsed corona plasma in a coaxial electrode system[J]. Transactions of China Electrotech- nical Society, 2002, 17(4): 26-30.
[6]  刘振亚. 特高压电网[M]. 北京: 中国经济出版社, 2005.
[7]  Lin L, Wu B, Zhang P, et al. Analysis of instabilities in non-equilibrium plasmas[J]. Chinese Physics Letters, 2004, 21(10): 1993-1996.
[8]  Stoffels E, Flikweert A J, Stoffels W W, et al. Plasma needle: a non-destructive atmospheric plasma source for fine surface treatment of(bio)materials[J]. Plasma Sources Science & Technology, 2002, 11(4): 383-388.
[9]  胡征. 等离子体化学基础[J]. 化工时刊, 2000, 14(7): 46-49. Hu Zheng. Plasma chemical basis[J]. Chemical Industry Times, 2000, 14(7): 46-49.
[10]  徐学基, 诸定昌. 空气放电物理[M]. 上海: 复旦大学出版社. 1996.
[11]  伍飞飞, 廖瑞金, 杨丽君, 等. 棒-板电极直流负电晕放电特里切尔脉冲的微观过程分析[J]. 物理学报, 2013, 62(11): 348-357. Wu Feifei, Liao Ruijin, Yang Lijun, et al. Numerical simulation of Trichel pulse characteristics in bar-plate DC negative corona discharge[J]. Acta Physica Sinica, 2013, 62(11): 348-357.
[12]  Sommerer T J, Kushner M J. Numerical investigation of the kinetics and chemistry of rf glow-discharge plasmas sustained in He, N 2 , O 2 , He/N 2 /O 2 , He/ CF 4 /O 2 , and SiH 4 /NH 3 using a monte-carlo-fluid hybrid model[J]. Journal of Applied Physics, 1992, 71(4): 1654-1673.
[13]  Fofana I, Beroual A, Rakotonandrasana J H. Applica- tion of dynamic models to predict switching impulse withstand voltages of long air gaps[J]. IEEE Transac- tions on Dielectrics and Electrical Insulation, 2013, 20(1): 89-97.
[14]  Brau Fabian, Luque Alejandro, Davidovitch Benny, et al. Moving-boundary approximation for curved streamer ionization fronts: Numerical tests[J]. Physical Review E, 2009, 79(6): 066211.
[15]  Luque A, Ebert U. Electron density fluctuations accelerate the branching of positive streamer discharges in air[J]. Physical Review E, 2011, 84(4): 046411.
[16]  Nijdam S, Miermans K, Van Veldhuizen E M, et al. A peculiar streamer morphology created by a complex voltage pulse[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2216-2217.
[17]  Davies A J, Davies C S, Evans C J. Computer simula- tion of rapidly developing gaseous discharges[C]. Proceedings of the Institution of Electrical Engineers, London, 1971: 816-823.
[18]  D'agostino Riccardo, Favia Pietro, Oehr Christian, et al. Five years of excellence in plasma science[J]. Plasma Processes and Polymers, 2009, 6(1): 7-10.
[19]  Nahorny J, Ferreira C M, Gordiets B, et al. Experi- mental and theoretical investigation of a N 2 -O 2 DC flowing glow-discharge[J]. Journal of Physics D- Applied Physics, 1995, 28(4): 738-747.
[20]  Pancheshnyi S V, Starikovskii A Y. Two-dimensional numerical modelling of the cathode-directed streamer development in a long gap at high voltage[J]. Journal of Physics D-Applied Physics, 2003, 36(21): 2683- 2691.
[21]  Liu Xinghua, He Wei, Yang Fan, et al. Numerical simulation and experimental validation of a direct current air corona discharge under atmospheric pressure [J]. Chinese Physics B, 2012, 21(7): 075201
[22]  Antao Dion S, Staack David A, Fridman Alexander, et al. Atmospheric pressure dc corona discharges: opera- ting regimes and potential applications[J]. Plasma Sources Science & Technology, 2009, 18(3):
[23]  廖瑞金, 伍飞飞, 刘兴华, 等. 大气压直流正电晕放电暂态空间电荷分布仿真研究[J]. 物理学报, 2012, 61(24): 370-380. Liao Ruijin, Wu Feifei, Liu Xinghua, et al. Numerical simulation of transient space charge distribution of DC positive corona discharge under atmospheric pressure air[J]. Acta Physica Sinica, 2012, 61(24): 370-380.
[24]  Liao Ruijin, Wu Feifei, Yang Lijun. Investigation on microcosmic characteristics of trichel pulse in bar- plate dc negative corona discharge based on a novel simulation model[J]. International Review of Electrical Engineering, 8(8): 504-513.
[25]  Georghiou G E, Papadakis A P, Morrow R, et al. Numerical modelling of atmospheric pressure gas discharges leading to plasma production[J]. Journal of Physics D-Applied Physics, 2005, 38(20): R303-R328.
[26]  Ebert Ute, Sentman Davis D. Streamers, sprites, leaders, lightning: from micro- to macroscales[J]. Journal of Physics D-Applied Physics, 2008, 41(23): 230301.
[27]  Liu Yang, Zissis Georges, Chen Yu Ming. Effect of non-Maxwellian electron energy distribution functions on the simulation of an inductively coupled Ar-Hg discharge[J]. Plasma Sources Science & Technology, 2013, 22(3): 035002.
[28]  Abdel-Fattah E, Sugai H. Combined effects of gas pressure and exciting frequency on electron energy distribution functions in hydrogen capacitively coupled plasmas[J]. Physics of Plasmas, 2013, 20(2): 023501.
[29]  Pancheshnyi S, Nudnova M, Starikovskii A. Develo- pment of a cathode-directed streamer discharge in air at different pressures: experiment and comparison with direct numerical simulation[J]. Physical Review E, 2005, 71(1): 016407.
[30]  Wu Feifei, Liao Ruijin, Liu Xinghua, et al. Numerical simulation of DC positive corona discharge under atmospheric environment[C]. International Conference on High Voltage Engineering and Application, Shanghai, 2012: 523-527.
[31]  刘兴华. 基于流体-化学反应混合模型的空气放电机理及特性研究[D]. 重庆: 重庆大学, 2012.
[32]  Li Chao, Ebert Ute, Hundsdorfer Willem. Spatially hybrid computations for streamer discharges with generic features of pulled fronts: I. planar fronts[J]. Journal of Computational Physics, 2010, 229(1): 200- 220.
[33]  Hagelaar G J M., Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J]. Plasma Sources Science & Technology, 2005, 14(4): 722-733.
[34]  刘兴华, 何为, 杨帆, 等. 空气放电中电子输运参数的计算与分析[J]. 高电压技术, 2011, 37(7): 1614-1619. Liy Xinghua, He Wei, Yang Fan, et al. Simulation and analysis of electron transport paramenters in air discharge[J]. High Voltage Engineering, 2011, 37(7): 1614-1619.
[35]  Itikawa Yukikazu. Cross sections for electron collisions with oxygen molecules[J]. Journal of Physical and Chemical Reference Data, 2009, 38(1): 1-20.
[36]  Tanaka Y, Michishita T, Uesugi Y. Hydrodynamic chemical non-equilibrium model of a pulsed arc discharge in dry air at atmospheric pressure[J]. Plasma Sources Science & Technology, 2005, 14(1): 134-151.
[37]  Kossyi I A, Kostinsky A Yu, Matveyev A A, et al. Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures[J]. Plasma Sources Science & Technology, 1992, 1(3): 207-220.
[38]  He Wei, Liu Xinghua, Yang Fan, et al. Numerical simulation of direct current glow discharge in air with experimental validation[J]. Japanese Journal of Applied Physics, 2012, 51(2): 026001.
[39]  Farouk Tanvir, Farouk Bakhtier, Staack David, et al. Simulation of dc atmospheric pressure argon micro glow-discharge[J]. Plasma Sources Science & Tech- nology, 2006, 15(4): 676-688.
[40]  Luque Alejandro, Ebert Ute, Montijn Carolynne, et al. Photoionization in negative streamers: fast computa- tions and two propagation modes[J]. Applied Physics Letters, 2007, 90(8):
[41]  Zhelezniak M B, Mnatsakanian A Kh, Sizykh Sv. Photoionization of nitrogen and oxygen mixtures by radiation from a gas discharge[J]. High Temperature Science, 1982, 20:357-362.
[42]  Segur P, Bourdon A, Marode E, et al. The use of an improved Eddington approximation to facilitate the calculation of photoionization in streamer discharges [J]. Plasma Sources Science & Technology, 2006, 15(4): 648-660.
[43]  Yi W J, Williams P F. Experimental study of streamers in pure N 2 and N 2 /O 2 mixtures and a approximate to 13cm gap[J]. Journal of Physics D-Applied Physics, 2002, 35(3): 205-218.
[44]  Sima Wenxia, Peng Qingjun, Yang Qing, et al. Study of the characteristics of a streamer discharge in air based on a plasma chemical model[J]. IEEE Transac- tions on Dielectrics and Electrical Insulation, 2012, 19(2): 660-670.
[45]  Hagelaar G J M, De Hoog F J, Kroesen G M W. Boundary conditions in fluid models of gas discharges [J]. Physical Review E, 2000, 62(1): 1452-1454.
[46]  Tran T N, Golosnoy I O, Lewin P L, et al. Numerical modelling of negative discharges in air with experi- mental validation[J]. Journal of Physics D-Applied Physics, 2011, 44(1):
[47]  Zentner R. Rise time of negative corona pulses[J]. Zeitschrift Fur Angewandte Physik, 1970, 29(5): 294.
[48]  Soria Hoyo C, Pontiga F, Castellanos A. Particle- in-cell simulation of Trichel pulses in pure oxygen[J]. Journal of Physics D-Applied Physics, 2007, 40(15): 4552-4560.
[49]  Akel M, Salo S A, Wong C S. Electron temperature measurement of argon focussed plasma based on non- local thermodynamic equilibrium model[J]. Journal of Fusion Energy, 2013, 32(3): 350-354.
[50]  Sima Wenxia, Peng Qingjun, Yang Qing, et al. Local electron mean energy profile of positive primary streamer discharge with pin-plate electrodes in oxygen- nitrogen mixtures[J]. Chinese Physics B, 2013, 22(1): 015203.
[51]  Marode E, Bastien F, Bakker M. Model of the streamer- induced spark formation based on neutral dynamics[J]. Journal of Applied Physics, 1979, 50(1): 140-146.
[52]  Lu Tiebing, Xiong Gaolin, Cui Xiang, et al. Analysis of corona onset electric field considering the effect of space charges[J]. IEEE Transactions on Magnetics, 2011, 47(5): 1390-1393.
[53]  Chen J H, Davidson J H. Ozone production in the positive DC corona discharge: model and comparison to experiments[J]. Plasma Chem Plasma Process, 2002, 22(4): 495-522.
[54]  彭庆军. 空气中流注放电等离子体化学模型研究及其影响因素分析[D]. 重庆: 重庆大学, 2012.
[55]  Lama W L, Gallo C F. Systematic study of electrical characteristics of trichel current pulses from negative needle-to-plane coronas[J]. Journal of Applied Physics, 1974, 45(1): 103-113.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133