Cleland E, Chiariello N, Loarie S, et al. Diverse responsesof phenology to global changes in a grassland ecosys-tem. Proceedings of the National Academy of Sciences,2006, 103(37): 13740.
[2]
Piao S, Fang J, Zhou L, et al. Variations in satellite-derivedphenology in China's temperate vegetation. GlobalChange Biology, 2006, 12(4): 672-685.
[3]
Sparks T, Jeffree E, Jeffree C. An examination of the relationshipbetween flowering times and temperature at thenational scale using long-term phenological records fromthe UK. International Journal of Biometeorology, 2000,44(2): 82-87.
[4]
Kramer K Phenology. Growth of European trees in relationto climate change[D]. Landbouw-Universit?t Wageningen,1996.
[5]
R?tzer T, Chmielewski F M. Phenological maps of Europe.Climate Research, 2001, 18(3): 249-257.
Julien Y, Sobrino J. Comparison of cloud-reconstructionmethods for time series of composite NDVI data. RemoteSensing of Environment, 2010, 114(3): 618-625.
[9]
Menenti M, Azzali S, Verhoef W, et al. Mapping agroecologicalzones and time lag in vegetation growth by meansof Fourier analysis of time series of NDVI images. Advancesin Space Research, 1993, 13(5): 233-237.
[10]
Roerink G, Su Z, Menenti M. S-SEBI: A simple remotesensing algorithm to estimate the surface energy balance.Physics and Chemistry of the Earth: Part B, Oceans andAtmosphere, 2000, 25(2): 147-157.
[11]
Zhang X, Friedl M, Schaaf C. Global vegetation phenologyfrom moderate resolution imaging spectroradiometer(MODIS): evaluation of global patterns and comparisonwith in situ measurements. Journal of Geophysical Research,2006, 111(G4): G04017.
[12]
Studer S, R St ckli, Appenzeller C, et al. A comparativestudy of satellite and ground-based phenology. InternationalJournal of Biometeorology, 2007, 51(5): 405-414.
[13]
Schwartz M, Reed B, White M. Assessing satellite-derivedstart-of-season measures in the conterminous USA.International Journal of Climatology, 2002, 22(14):1793-1805.
[14]
Maignan F, Bréon F, Bacour C, et al. Interannual vegetationphenology estimates from global AVHRR measurements:Comparison with in situ data and applications. RemoteSensing of Environment, 2008, 112(2): 496-505.
[15]
White M, de Beursk K, Didan K, et al. Intercomparison,interpretation, and assessment of spring phenology inNorth America estimated from remote sensing for1982-2006. Global Change Biology, 2009, 15(10):2335-2359.
[16]
Zhou L, Kaufmann R K, Shabanov N V, et al. Variationsin northern vegetation activity inferred from satellite dataof vegetation index during 1981 to 1999. Journal of GeophysicalResearch, 2001, 106(D17): 20069-20083.
[17]
Studer S, Appenzeller C, Defila C. Inter-annual variabilityand decadal trends in alpine spring phenology: A multivariateanalysis approach. Climatic Change, 2005, 73(3):395-414.
[18]
Piao S, Ciais P, Friedlingstein P, et al. Net carbon dioxidelosses of northern ecosystems in response to autumnwarming. Nature, 2008, 451(7174): 49-52.
[19]
Cleland E, Chiariello N, Loarie S, et al. Diverse responsesof phenology to global changes in a grassland ecosys-tem. Proceedings of the National Academy of Sciences,2006, 103(37): 13740.
[20]
Piao S, Fang J, Zhou L, et al. Variations in satellite-derivedphenology in China's temperate vegetation. GlobalChange Biology, 2006, 12(4): 672-685.
[21]
Sparks T, Jeffree E, Jeffree C. An examination of the relationshipbetween flowering times and temperature at thenational scale using long-term phenological records fromthe UK. International Journal of Biometeorology, 2000,44(2): 82-87.
[22]
Kramer K Phenology. Growth of European trees in relationto climate change[D]. Landbouw-Universit?t Wageningen,1996.
[23]
R?tzer T, Chmielewski F M. Phenological maps of Europe.Climate Research, 2001, 18(3): 249-257.
Julien Y, Sobrino J. Comparison of cloud-reconstructionmethods for time series of composite NDVI data. RemoteSensing of Environment, 2010, 114(3): 618-625.
[27]
Menenti M, Azzali S, Verhoef W, et al. Mapping agroecologicalzones and time lag in vegetation growth by meansof Fourier analysis of time series of NDVI images. Advancesin Space Research, 1993, 13(5): 233-237.
[28]
Roerink G, Su Z, Menenti M. S-SEBI: A simple remotesensing algorithm to estimate the surface energy balance.Physics and Chemistry of the Earth: Part B, Oceans andAtmosphere, 2000, 25(2): 147-157.
Yu X, Zhuang D. Monitoring forest phenophases ofNortheast China based on MODIS NDVI Data. ResourcesScience, 2006, 28(4): 111-117.
[31]
Reed B C, Brown J F, VanderZee D, et al. Measuring phenologicalvariability from satellite imagery. Journal ofVegetation Science, 1994, 5(5): 703-714.
[32]
Fisher J, Mustard J, Vadeboncoeur M. Green leaf phenologyat Landsat resolution: Scaling from the field to thesatellite. Remote Sensing of Environment, 2006, 100(2):265-279.
[33]
J?nsson P, Eklundh L. Seasonality extraction by functionfitting to time-series of satellite sensor data. Geoscienceand Remote Sensing, 2002, 40(8): 1824-1832.
[34]
Zhang X, Friedl M, Schaaf C, et al. Monitoring vegetationphenology using MODIS. Remote Sensing of Environment,2003, 84(3): 471-475.
[35]
Fisher J, Mustard J. Cross-scalar satellite phenology fromground, Landsat, and MODIS data. Remote Sensing ofEnvironment, 2007, 109(3): 261-273.
[36]
Delbart N, Kergoat L, Le Toan T, et al. Determination ofphenological dates in boreal regions using normalized differencewater index. Remote Sensing of Environment,2005, 97(1): 26-38.
[37]
van Leeuwen W J D. Monitoring the effects of forest restorationtreatments on post-fire vegetation recovery withMODIS multitemporal data. Sensors, 2008, 8(3):2017-2042.
[38]
J?nsson P, Eklundh L. TIMESAT: A program for analyzingtime-series of satellite sensor data. Computers & Geosciences,2004, 30(8): 833-845.
[39]
Zeng H, Jia G, Epstein H. Recent changes in phenologyover the northern high latitudes detected from multi-satellitedata. Environmental Research Letters, 2011, 6:045508.
[40]
Zeng H, Jia G, Epstein H. Recent changes in phenologyover the northern high latitudes detected from multi-satellitedata. Environmental Research Letters, 2011, 6(4):045508.
[41]
Reed B. Trend analysis of time-series phenology of NorthAmerica derived from satellite data. GIScience & RemoteSensing, 2006, 43(1): 24-38.
[42]
Baldocchi D, Black T, Curtis P, et al. Predicting the onsetof net carbon uptake by deciduous forests with soil temperatureand climate data: A synthesis of FLUXNET data.International Journal of Biometeorology, 2005, 49(6):377-387.
[43]
Richardson A, T Andy Black, Ciais P, et al. Influence ofspring and autumn phenological transitions on forest ecosystemproductivity. Philosophical Transactions of theRoyal Society B: Biological Sciences, 2010, 365(1555):3227.
[44]
White M, de Beursk K, Didan K, et al. Intercomparison,interpretation, and assessment of spring phenology inNorth America estimated from remote sensing for1982-2006. Global Change Biology, 2009, 15(10):2335-2359.
[45]
Zhou L, Kaufmann R K, Shabanov N V, et al. Variationsin northern vegetation activity inferred from satellite dataof vegetation index during 1981 to 1999. Journal of GeophysicalResearch, 2001, 106(D17): 20069-20083.
[46]
Studer S, Appenzeller C, Defila C. Inter-annual variabilityand decadal trends in alpine spring phenology: A multivariateanalysis approach. Climatic Change, 2005, 73(3):395-414.
[47]
Piao S, Ciais P, Friedlingstein P, et al. Net carbon dioxidelosses of northern ecosystems in response to autumnwarming. Nature, 2008, 451(7174): 49-52.
Yu X, Zhuang D. Monitoring forest phenophases ofNortheast China based on MODIS NDVI Data. ResourcesScience, 2006, 28(4): 111-117.
[50]
Reed B C, Brown J F, VanderZee D, et al. Measuring phenologicalvariability from satellite imagery. Journal ofVegetation Science, 1994, 5(5): 703-714.
[51]
Fisher J, Mustard J, Vadeboncoeur M. Green leaf phenologyat Landsat resolution: Scaling from the field to thesatellite. Remote Sensing of Environment, 2006, 100(2):265-279.
[52]
J?nsson P, Eklundh L. Seasonality extraction by functionfitting to time-series of satellite sensor data. Geoscienceand Remote Sensing, 2002, 40(8): 1824-1832.
[53]
Zhang X, Friedl M, Schaaf C, et al. Monitoring vegetationphenology using MODIS. Remote Sensing of Environment,2003, 84(3): 471-475.
[54]
Fisher J, Mustard J. Cross-scalar satellite phenology fromground, Landsat, and MODIS data. Remote Sensing ofEnvironment, 2007, 109(3): 261-273.
[55]
Delbart N, Kergoat L, Le Toan T, et al. Determination ofphenological dates in boreal regions using normalized differencewater index. Remote Sensing of Environment,2005, 97(1): 26-38.
[56]
van Leeuwen W J D. Monitoring the effects of forest restorationtreatments on post-fire vegetation recovery withMODIS multitemporal data. Sensors, 2008, 8(3):2017-2042.
[57]
J?nsson P, Eklundh L. TIMESAT: A program for analyzingtime-series of satellite sensor data. Computers & Geosciences,2004, 30(8): 833-845.
[58]
Zeng H, Jia G, Epstein H. Recent changes in phenologyover the northern high latitudes detected from multi-satellitedata. Environmental Research Letters, 2011, 6:045508.
[59]
Zeng H, Jia G, Epstein H. Recent changes in phenologyover the northern high latitudes detected from multi-satellitedata. Environmental Research Letters, 2011, 6(4):045508.
[60]
Reed B. Trend analysis of time-series phenology of NorthAmerica derived from satellite data. GIScience & RemoteSensing, 2006, 43(1): 24-38.
[61]
Baldocchi D, Black T, Curtis P, et al. Predicting the onsetof net carbon uptake by deciduous forests with soil temperatureand climate data: A synthesis of FLUXNET data.International Journal of Biometeorology, 2005, 49(6):377-387.
[62]
Richardson A, T Andy Black, Ciais P, et al. Influence ofspring and autumn phenological transitions on forest ecosystemproductivity. Philosophical Transactions of theRoyal Society B: Biological Sciences, 2010, 365(1555):3227.
Schwartz M, R. Ahas, Aasa A. Onset of spring startingearlier across the Northern Hemisphere. Global ChangeBiology, 2006, 12(2): 343-351.
[66]
Myneni R, Keeling C, Tucker C, et al. Increased plantgrowth in the northern high latitudes from 1981 to 1991.Nature, 1997, 386(6626): 698-702.
[67]
Delbart N, Le Toan T, Kergoat L, et al. Remote sensingof spring phenology in boreal regions: A free of snow-effectmethod using NOAA-AVHRR and SPOT-VGT data(1982-2004). Remote Sensing of Environment, 2006, 101(1): 52-62.
Schwartz M, R. Ahas, Aasa A. Onset of spring startingearlier across the Northern Hemisphere. Global ChangeBiology, 2006, 12(2): 343-351.
[71]
Myneni R, Keeling C, Tucker C, et al. Increased plantgrowth in the northern high latitudes from 1981 to 1991.Nature, 1997, 386(6626): 698-702.
[72]
Delbart N, Le Toan T, Kergoat L, et al. Remote sensingof spring phenology in boreal regions: A free of snow-effectmethod using NOAA-AVHRR and SPOT-VGT data(1982-2004). Remote Sensing of Environment, 2006, 101(1): 52-62.
[73]
Zhang X, Friedl M, Schaaf C. Global vegetation phenologyfrom moderate resolution imaging spectroradiometer(MODIS): evaluation of global patterns and comparisonwith in situ measurements. Journal of Geophysical Research,2006, 111(G4): G04017.
[74]
Studer S, R St ckli, Appenzeller C, et al. A comparativestudy of satellite and ground-based phenology. InternationalJournal of Biometeorology, 2007, 51(5): 405-414.
[75]
Schwartz M, Reed B, White M. Assessing satellite-derivedstart-of-season measures in the conterminous USA.International Journal of Climatology, 2002, 22(14):1793-1805.
[76]
Maignan F, Bréon F, Bacour C, et al. Interannual vegetationphenology estimates from global AVHRR measurements:Comparison with in situ data and applications. RemoteSensing of Environment, 2008, 112(2): 496-505.