Carey H C. Principles of social science. Philadelphia:Lippincott, 1858.
[2]
顾朝林. 中国城镇体系: 历史、现状、展望. 北京: 商务印书馆, 1992: 275-313.
[3]
杨齐. 区域客流分布模型的研究. 地理学报, 1990, 45(3): 264-274.
[4]
Chin S M, Janet H, Hwang H L. Estimating state-leveltruck activities in America. Journal of Transportation Statistics,1998(1): 63-74.
[5]
Deardorff A. Determinants of bilateral trade: does gravitywork in a frictionless world? //Frankel J. The Regionalizationof the World Economy. Chicago: University ofChicago Press, 1998: 7-28.
Shen G. Reverse-fitting the gravity model to inter-city airlinepassenger flows by an algebraic simplification. Journalof Transport Geography, 2004, 12(3): 219-234.
Evans S P, Kirby H R. A three-dimensional furness procedurefor calibrating gravity models. Transportation Research,1974, 8(2): 105-122.
[10]
Flowerdew R, John S. A method of fitting the gravitymodel based on the Poission distribution. Journal of RegionalScience, 1982, 22(2): 191-202.
[11]
Sen A, Smith T E. Gravity Models of Spatial InteractionBehavior. Berlin: Springer-Verlag, 1995.
[12]
Wilson A G. A statistical theory of spatial distributionmodels. Transportation Research, 1967, 1(3): 253-269.
[13]
O’Kelly M E, SongW, Shen G. New estimates of gravitationalattraction by linear programming. GeographicalAnalysis, 1995, 27(4): 271-285.
[14]
Shen G. Estimating nodal attractions with exogenous spatialinteraction and impedance data using the gravity model.Regional Science, 1999, 78(2): 213-220.
[15]
Shen G. Estimating aggregated gravitational attractionsby an algebraic simplification. Regional Science, 2002,32(2): 41-56.
Chin S M, Janet H, Hwang H L. Estimating state-leveltruck activities in America. Journal of Transportation Statistics,1998(1): 63-74.
[24]
Deardorff A. Determinants of bilateral trade: does gravitywork in a frictionless world? //Frankel J. The Regionalizationof the World Economy. Chicago: University ofChicago Press, 1998: 7-28.
Shen G. Reverse-fitting the gravity model to inter-city airlinepassenger flows by an algebraic simplification. Journalof Transport Geography, 2004, 12(3): 219-234.
Evans S P, Kirby H R. A three-dimensional furness procedurefor calibrating gravity models. Transportation Research,1974, 8(2): 105-122.
[29]
Flowerdew R, John S. A method of fitting the gravitymodel based on the Poission distribution. Journal of RegionalScience, 1982, 22(2): 191-202.
[30]
Sen A, Smith T E. Gravity Models of Spatial InteractionBehavior. Berlin: Springer-Verlag, 1995.
[31]
Wilson A G. A statistical theory of spatial distributionmodels. Transportation Research, 1967, 1(3): 253-269.
[32]
O’Kelly M E, SongW, Shen G. New estimates of gravitationalattraction by linear programming. GeographicalAnalysis, 1995, 27(4): 271-285.
[33]
Shen G. Estimating nodal attractions with exogenous spatialinteraction and impedance data using the gravity model.Regional Science, 1999, 78(2): 213-220.
[34]
Shen G. Estimating aggregated gravitational attractionsby an algebraic simplification. Regional Science, 2002,32(2): 41-56.