全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

全球变化对草地土壤微生物群落多样性的影响研究进展

DOI: 10.11820/dlkxjz.2012.12.018, PP. 1715-1723

Keywords: CO2浓度,草地,氮沉降,降水,气温上升,全球变化,微生物群落多样性

Full-Text   Cite this paper   Add to My Lib

Abstract:

全球变化对人类生存环境的影响已成为当前全世界共同关注的焦点。草地分布十分广泛,且大多位于生态脆弱带,对全球变化响应十分敏感。当前,有关全球变化对草地生态系统影响的研究主要集中于地上植被部分,对于生态系统物质循环关键参与者和草地碳源汇的重要调节者——土壤微生物的研究相对较少。本文综述了全球变化因子,包括CO2浓度、气温、降水及氮沉降等因素及其交互作用对草地土壤微生物群落多样性影响的相关研究进展,并在此基础上对当前研究中的一些不足之处进行剖析,对未来研究需关注的问题和研究方向进行了讨论和展望。

References

[1]  Drigo B, Pijl A S, Duyts H, et al. Shifting carbon flowfrom roots into associated microbial communities in responseto elevated atmospheric CO2. Proceedings of theNational Academy of Sciences, 2010, 107(24):10938-10942.
[2]  Drissner D, Blum H, Tscherko D, et al. Nine years of enrichedCO2 changes the function and structural diversityof soil microorganisms in a grassland. European Journalof Soil Science, 2007, 58(1): 260-269.
[3]  Montealegre C M, van Kessel C, Russelle M P, et al.Changes in microbial activity and composition in a pastureecosystem exposed to elevated atmospheric carbondioxide. Plant and Soil, 2002, 243(2): 197-207.
[4]  Schneider M K, Lüscher A, Richter M, et al. Ten years offree-air CO2 enrichment altered the mobilization of Nfrom soil in Lolium perenne L. swards. Global Change Biology,2004, 10(8): 1377-1388.
[5]  Regan K, Kammann C, Hartung K, et al. Can differencesin microbial abundances help explain enhanced N2Oemissions in a permanent grassland under elevated atmosphericCO2? Global Change Biology, 2011, 17(10):3176-3186.
[6]  Chung H, Zak D R, Reich P B, et al. Plant species richness,elevated CO2, and atmospheric nitrogen depositionalter soil microbial community composition and function.Global Change Biology, 2007, 13(5): 980-989.
[7]  IPCC. IPCC Special Report on Carbon Dioxide Capatureand Storage. Cambridge, United Kingdom and NewYork, NY, USA: Cambridge University Press, 2005.
[8]  Oppermann B I, Michaelis W, Blumenberg M, et al. Soilmicrobial community changes as a result of long-term exposureto a natural CO2 vent. Geochimica et CosmochimicaActa, 2010, 74(9): 2697-2716.
[9]  Ebersberger D, Wermbter N, Niklaus P A, et al. Effects oflong term CO2 enrichment on microbial community structurein calcareous grassland. Plant and Soil, 2004, 264(1): 313-323.
[10]  Niklaus P, Alphei J, Ebersberger D, et al. Six years of insitu CO2 enrichment evoke changes in soil structure andsoil biota of nutrient-poor grassland. Global Change Biology,2003, 9(4): 585-600.
[11]  IPCC. Climate Change 2007: Impacts, Adaptation andVulnerability. Contribution of Working Group II to theFourth Assessment Report of the Intergovernmental PanelonClimate Change. UK, 2007.
[12]  Huntington T G. Climate warming could reduce runoffsignificantly in New England, USA. Agricultural and ForestMeteorology, 2003, 117(3-4): 193-201.
[13]  Niu S, Wu M, Han Y, et al. Water-mediated responses ofecosystem carbon fluxes to climatic change in a temperatesteppe. New Phytologist, 2008, 177(1): 209-219.
[14]  Fenchel T, King G, Blackburn T. Bacterial Biogeochemistry.San Diego, CA, USA: Academic Press, 1998.
[15]  Scharpenseel H W, Schomaker M, Ayoub A. Soils on aWarmer Earth: Effects of Expected Climate Change onSoil Processes, with Emphasis on the Tropics andSub-tropics. New York, USA: Elsevier Science Ltd,1990.
[16]  Weltzin J F, Bridgham S D, Pastor J, et al. Potential effectsof warming and drying on peatland plant communitycomposition. Global Change Biology, 2003, 9(2):141-151.
[17]  Hu S, Chapin F S, Firestone M, et al. Nitrogen limitationof microbial decomposition in a grassland under elevatedCO2. Nature, 2001, 409(6817): 188-191.
[18]  Zhang W, Parker K M, Luo Y, et al. Soil microbial responsesto experimental warming and clipping in a tallgrassprairie. Global Change Biology, 2005, 11(2):266-277.
[19]  Pankratov T A, Ivanova A O, Dedysh S N, et al. Bacterial populations and environmental factors controlling cellulosedegradation in an acidic Sphagnum peat. EnvironmentalMicrobiology, 2011, 13(7): 1800-1814.
[20]  Kandeler E, Tscherko D, Bardgett R D, et al. The responseof soil microorganisms and roots to elevated CO2and temperature in a terrestrial model ecosystem. Plantand Soil, 1998, 202(2): 251-262.
[21]  Bardgett R D, Kandeler E, Tscherko D, et al. Below-ground microbial community development in a hightemperature world. Oikos, 1999, 85(2): 193-203.
[22]  Wu Y, Yu X, Wang H, et al. Does history matter? Temperatureeffects on soil microbial biomass and communitystructure based on the phospholipid fatty acid (PLFA)analysis. Journal of Soils and Sediments, 2010, 10(2):223-230.
[23]  B??th E. Adaptation of soil bacterial communities to prevailingpH in different soils. FEMS Microbiol Ecol,1996, 19(4): 227-237.
[24]  朱连奇, 许立民. 全球变化对陆地生态系统的影响研究.地域研究与开发, 2011, 30(2): 161-165.
[25]  周广胜, 王玉辉, 蒋延玲. 全球变化与中国东北样带(NECT). 地学前缘, 2002, 9(1): 198-216.
[26]  曲建升, 葛全胜, 张雪芹. 全球变化及其相关科学概念的发展与比较. 地球科学进展, 2008, 23(12): 1277-1284.
[27]  周广胜, 许振柱, 王玉辉. 全球变化的生态系统适应性.地球科学进展, 2004, 19(4): 642-649.
[28]  Vitousek P M, Aber J D, Howarth RW, et al. Human alterationof the global nitrogen cycle: Sources and consequences.Ecological Applications, 1997, 7(3): 737-750.
[29]  Jobbágy E G, Jackson R B. The vertical distribution of soilorganic carbon and its relation to climate and vegetation.Ecological Applications, 2000, 10(2): 423-436.
[30]  徐柱. 面向21 世纪的中国草地资源. 中国草地, 1998(5):2-9.
[31]  张新时. 草地的生态经济功能及其范式. 科技导报, 2000(8): 3-7, 65.
[32]  杨钙仁, 童成立, 张文菊, 等. 陆地碳循环中的微生物分解作用及其影响因素. 土壤通报, 2005, 36(4): 605-609.
[33]  张薇, 魏海雷, 高洪文, 等. 土壤微生物多样性及其环境影响因子研究进展. 生态学杂志, 2005, 24(1): 48-52.
[34]  He Z, Piceno Y, Deng Y, et al. The phylogenetic compositionand structure of soil microbial communities shifts inresponse to elevated carbon dioxide. The ISME Journal,2012, 6(2): 259-272.
[35]  Karl T R, Trenberth K E. Modern global climate change.Science, 2003, 302(5651): 1719-1723.
[36]  Kelley A M, Fay P A, Polley H W, et al. Atmospheric CO2and soil extracellular enzyme activity: A meta-analysisand CO2 gradient experiment. Ecosphere, 2011, 2(8):1-20.
[37]  Jackson R B, Cook C W, Pippen J S, et al. Increased belowgroundbiomass and soil CO2 fluxes after a decade ofcarbon dioxide enrichment in a warm-temperate forest.Ecology, 2009, 90(12): 3352-3366.
[38]  Gill R A, Polley H W, Johnson H B, et al. Nonlineargrassland responses to past and future atmospheric CO2.Nature, 2002, 417: 279-282.
[39]  Carney K M, Hungate B A, Drake B G, et al. Altered soilmicrobial community at elevated CO2 leads to loss of soilcarbon. Proceedings of the National Academy of Sciences,2007, 104(12): 4990-4995.
[40]  Kandeler E, Mosier A R, Morgan J A, et al. Transient elevationof carbon dioxide modifies the microbial communitycomposition in a semi-arid grassland. Soil Biologyand Biochemistry, 2008, 40(1): 162-171.
[41]  Malchair S, De Boeck H J, Lemmens C M H M, et al. Diversity-function relationship of ammonia-oxidizing bacteriain soils among functional groups of grassland speciesunder climate warming. Applied Soil Ecology, 2010,44(1): 15-23.
[42]  Horz H-P, Rich V, Avrahami S, et al. Methane-OxidizingBacteria in a California Upland Grassland Soil: Diversityand Response to Simulated Global Change. Applied andEnvironmental Microbiology, 2005, 71(5): 2642-2652.
[43]  米亮, 王光华, 金剑, 等. 黑土微生物呼吸及群落功能多样性对温度的响应. 应用生态学报, 2010, 21(6):1485-1491.
[44]  江志红, 张霞, 王冀. IPCC-AR4 模式对中国21 世纪气候变化的情景预估. 地理研究, 2008, 27(4): 787-799.
[45]  Van Gestel M, Merckx R, Vlassak K. Microbial biomassresponses to soil drying and rewetting: The fate offast-and slow-growing microorganisms in soils from differentclimates. Soil Biology and Biochemistry, 1993, 25(1): 109-123.
[46]  Schimel J P, Gulledge J M, Clein-Curley J S, et al. Moistureeffects on microbial activity and community structurein decomposing birch litter in the Alaskan taiga. SoilBiology and Biochemistry, 1999, 31(6): 831-838.
[47]  Bapiri A, Baath E, Rousk J. Drying-rewetting cycles affectfungal and bacterial growth differently in an arablesoil. Microbial Ecology, 2010, 60(2): 419-428.
[48]  Denef K, Six J, Bossuyt H, et al. Influence of dry-wet cycleson the interrelationship between aggregate, particulateorganic matter, and microbial community dynamics.Soil Biology and Biochemistry, 2001, 33(12-13):1599-1611.
[49]  Thomson B C, Ostle N J, McNamara N P, et al. Effects ofsieving, drying and rewetting upon soil bacterial communitystructure and respiration rates. Journal of MicrobiologicalMethods, 2010, 83(1): 69-73.
[50]  Horz H P, Barbrook A, Field C B, et al. Ammonia-oxidizingbacteria respond to multifactorial global change. Proceedingsof the National Academy of Sciences of theUnited States of America, 2004, 101(42): 15136-15141.
[51]  Fierer N, Schimel J P, Holden P A. Influence of drying-rewettingfrequency on soil bacterial community structure.Microbial Ecology, 2003, 45(1): 63-71.
[52]  Castro H F, Classen A T, Austin E E, et al. Soil microbialcommunity responses to multiple experimental climatechange drivers. Applied and Environmental Microbiology,2010, 76(4): 999-1007.
[53]  Cruz-Martinez K, Suttle K B, Brodie E L, et al. Despitestrong seasonal responses, soil microbial consortia aremore resilient to long-term changes in rainfall than overlyinggrassland. The ISME Journal, 2009, 3(6): 738-744.
[54]  Galloway J N, Townsend A R, Erisman J W, et al. Transformationof the nitrogen cycle: Recent trends, questions,and potential solutions. Science, 2008, 320: 889-892.
[55]  薛璟花, 莫江明, 李炯, 等. 氮沉降增加对土壤微生物的影响. 生态环境, 2005, 14(5): 777-782.
[56]  Smolander A, Kurka A, Kitunen V, et al. Microbial biomassC and N, and respiratory activity in soil of repeatedlylimed and N-and P-fertilized Norway spruce stands.Soil Biology and Biochemistry, 1994, 26(8): 957-962.
[57]  Kennedy N, Brodie E, Connolly J, et al. Impact of lime,nitrogen and plant species on bacterial community structurein grassland microcosms. Environmental Microbiology,2004, 6(10): 1070-1080.
[58]  Steenwerth K L, Jackson L E, Calderón F J, et al. Soil microbialcommunity composition and land use history incultivated and grassland ecosystems of coastal California.Soil Biology and Biochemistry, 2002, 34(11):1599-1611.
[59]  B??th E, Anderson T H. Comparison of soil fungal/bacterialratios in a pH gradient using physiological andPLFA-based techniques. Soil Biology and Biochemistry,2003, 35(7): 955-963.
[60]  刘蔚秋, 刘滨扬, 王江, 等. 不同环境条件下土壤微生物对模拟大气氮沉降的响应. 生态学报, 2010, 30(7):1691-1698.
[61]  Bardgett R D, Lovell R D, Hobbs P J, et al. Seasonalchanges in soil microbial communities along a fertilitygradient of temperate grasslands. Soil Biology and Biochemistry,1999, 31(7): 1021-1030.
[62]  Frey S D, Knorr M, Parrent J L, et al. Chronic nitrogenenrichment affects the structure and function of the soilmicrobial community in temperate hardwood and pineforests. Forest Ecology and Management, 2004, 196(1):159-171.
[63]  薛璟花, 莫江明, 李炯, 等. 土壤微生物数量对模拟氮沉降增加的早期响应. 广西植物, 2007, 27(2): 174-179,202.
[64]  Yevdokimov I, Gattinger A, Buegger F, et al. Changes inmicrobial community structure in soil as a result of differentamounts of nitrogen fertilization. Biology and Fertilityof Soils, 2008, 44(8): 1103-1106.
[65]  Di H J, Cameron K C, Shen J P, et al. Ammonia-oxidizingbacteria and archaea grow under contrasting soil nitrogenconditions. FEMS Microbiology Ecology, 2010, 72(3): 386-394.
[66]  张燕, 崔学民, 樊明寿. 大气氮沉降及其对草地生物多样性的影响. 草业科学, 2007, 24(7): 12-17.
[67]  Yoshida L C, Allen E B. Response to ammonium and nitrateby a mycorrhizal annual invasive grass and nativeshrub in southern California. American Journal of Botany,2001, 88(8): 1430-1436.
[68]  Heil G, Werger M, De Mol W, et al. Capture of atmosphericammonium by grassland canopies. Science, 1988,239(4841): 764-765.
[69]  DeForest J L, Zak D R, Pregitzer K S, et al. Atmosphericnitrate deposition, microbial community composition,and enzyme activity in northern hardwood forests. SoilScience Society of America Journal, 2004, 68(1):132-138.
[70]  Blankinship J C, Niklaus P A, Hungate B A. A meta-analysisof responses of soil biota to global change. Oecologia,2011, 165(3): 1-13.
[71]  Gutknecht J L M, Field C B, Balser T C. Microbial communitiesand their responses to simulated global changefluctuate greatly over multiple years. Global Change Biology,2012, 18(7): 2256-2269.
[72]  Zavaleta E S, Shaw M R, Chiariello N R, et al. Additiveeffects of simulated climate changes, elevated CO2, andnitrogen deposition on grassland diversity. Proceedingsof the National Academy Sciences of United States ofAmerica, 2003, 100(13): 7650-7654.
[73]  Eisenhauer N, Cesarz S, Koller R, et al. Global change belowground:Impacts of elevated CO2, nitrogen, and summerdrought on soil food webs and biodiversity. GlobalChange Biology, 2012, 18(2): 435-447.
[74]  Gutknecht J L M, Field C B, Balser T C. Microbial communitiesand their responses to simulated global changefluctuate greatly over multiple years. Global Change Biology,2012, 18(7): 2256-2269.
[75]  Scurlock J M O, Johnson K, Olson R J. Estimating netprimary productivity from grassland biomass dynamicsmeasurements. Global Change Biology, 2002, 8(8):736-753.
[76]  王军邦, 黄玫, 林小惠. 青藏高原草地生态系统碳收支研究进展. 地理科学进展, 2012, 31(1): 123-128.
[77]  Soussana J F, Loiseau P, Vuichard N, et al. Carbon cyclingand sequestration opportunities in temperate grasslands.Soil Use and Management, 2004, 20(2): 219-230.
[78]  赵同谦, 欧阳志云, 贾良清, 等. 中国草地生态系统服务功能间接价值评价. 生态学报, 2004, 24(6): 1101-1110.
[79]  方精云, 杨元合, 马文红, 等. 中国草地生态系统碳库及其变化. 中国科学: C辑, 2010, 40(7): 566-576.
[80]  Zavaleta E S, Shaw M R, Chiariello N R, et al. Additiveeffects of simulated climate changes, elevated CO2, andnitrogen deposition on grassland diversity. Proceedingsof the National Academy Sciences of United States ofAmerica, 2003, 100(13): 7650-7654.
[81]  Feng Q, Cheng G D, Mikami M. The carbon cycle of sandylands in China and its global significance. ClimaticChange, 2001, 48(4): 535-549.
[82]  Eisenhauer N, Cesarz S, Koller R, et al. Global change belowground:Impacts of elevated CO2, nitrogen, and summerdrought on soil food webs and biodiversity. GlobalChange Biology, 2012, 18(2): 435-447.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133