Drigo B, Pijl A S, Duyts H, et al. Shifting carbon flowfrom roots into associated microbial communities in responseto elevated atmospheric CO2. Proceedings of theNational Academy of Sciences, 2010, 107(24):10938-10942.
[2]
Drissner D, Blum H, Tscherko D, et al. Nine years of enrichedCO2 changes the function and structural diversityof soil microorganisms in a grassland. European Journalof Soil Science, 2007, 58(1): 260-269.
[3]
Montealegre C M, van Kessel C, Russelle M P, et al.Changes in microbial activity and composition in a pastureecosystem exposed to elevated atmospheric carbondioxide. Plant and Soil, 2002, 243(2): 197-207.
[4]
Schneider M K, Lüscher A, Richter M, et al. Ten years offree-air CO2 enrichment altered the mobilization of Nfrom soil in Lolium perenne L. swards. Global Change Biology,2004, 10(8): 1377-1388.
[5]
Regan K, Kammann C, Hartung K, et al. Can differencesin microbial abundances help explain enhanced N2Oemissions in a permanent grassland under elevated atmosphericCO2? Global Change Biology, 2011, 17(10):3176-3186.
[6]
Chung H, Zak D R, Reich P B, et al. Plant species richness,elevated CO2, and atmospheric nitrogen depositionalter soil microbial community composition and function.Global Change Biology, 2007, 13(5): 980-989.
[7]
IPCC. IPCC Special Report on Carbon Dioxide Capatureand Storage. Cambridge, United Kingdom and NewYork, NY, USA: Cambridge University Press, 2005.
[8]
Oppermann B I, Michaelis W, Blumenberg M, et al. Soilmicrobial community changes as a result of long-term exposureto a natural CO2 vent. Geochimica et CosmochimicaActa, 2010, 74(9): 2697-2716.
[9]
Ebersberger D, Wermbter N, Niklaus P A, et al. Effects oflong term CO2 enrichment on microbial community structurein calcareous grassland. Plant and Soil, 2004, 264(1): 313-323.
[10]
Niklaus P, Alphei J, Ebersberger D, et al. Six years of insitu CO2 enrichment evoke changes in soil structure andsoil biota of nutrient-poor grassland. Global Change Biology,2003, 9(4): 585-600.
[11]
IPCC. Climate Change 2007: Impacts, Adaptation andVulnerability. Contribution of Working Group II to theFourth Assessment Report of the Intergovernmental PanelonClimate Change. UK, 2007.
[12]
Huntington T G. Climate warming could reduce runoffsignificantly in New England, USA. Agricultural and ForestMeteorology, 2003, 117(3-4): 193-201.
[13]
Niu S, Wu M, Han Y, et al. Water-mediated responses ofecosystem carbon fluxes to climatic change in a temperatesteppe. New Phytologist, 2008, 177(1): 209-219.
[14]
Fenchel T, King G, Blackburn T. Bacterial Biogeochemistry.San Diego, CA, USA: Academic Press, 1998.
[15]
Scharpenseel H W, Schomaker M, Ayoub A. Soils on aWarmer Earth: Effects of Expected Climate Change onSoil Processes, with Emphasis on the Tropics andSub-tropics. New York, USA: Elsevier Science Ltd,1990.
[16]
Weltzin J F, Bridgham S D, Pastor J, et al. Potential effectsof warming and drying on peatland plant communitycomposition. Global Change Biology, 2003, 9(2):141-151.
[17]
Hu S, Chapin F S, Firestone M, et al. Nitrogen limitationof microbial decomposition in a grassland under elevatedCO2. Nature, 2001, 409(6817): 188-191.
[18]
Zhang W, Parker K M, Luo Y, et al. Soil microbial responsesto experimental warming and clipping in a tallgrassprairie. Global Change Biology, 2005, 11(2):266-277.
[19]
Pankratov T A, Ivanova A O, Dedysh S N, et al. Bacterial populations and environmental factors controlling cellulosedegradation in an acidic Sphagnum peat. EnvironmentalMicrobiology, 2011, 13(7): 1800-1814.
[20]
Kandeler E, Tscherko D, Bardgett R D, et al. The responseof soil microorganisms and roots to elevated CO2and temperature in a terrestrial model ecosystem. Plantand Soil, 1998, 202(2): 251-262.
[21]
Bardgett R D, Kandeler E, Tscherko D, et al. Below-ground microbial community development in a hightemperature world. Oikos, 1999, 85(2): 193-203.
[22]
Wu Y, Yu X, Wang H, et al. Does history matter? Temperatureeffects on soil microbial biomass and communitystructure based on the phospholipid fatty acid (PLFA)analysis. Journal of Soils and Sediments, 2010, 10(2):223-230.
[23]
B??th E. Adaptation of soil bacterial communities to prevailingpH in different soils. FEMS Microbiol Ecol,1996, 19(4): 227-237.
Vitousek P M, Aber J D, Howarth RW, et al. Human alterationof the global nitrogen cycle: Sources and consequences.Ecological Applications, 1997, 7(3): 737-750.
[29]
Jobbágy E G, Jackson R B. The vertical distribution of soilorganic carbon and its relation to climate and vegetation.Ecological Applications, 2000, 10(2): 423-436.
He Z, Piceno Y, Deng Y, et al. The phylogenetic compositionand structure of soil microbial communities shifts inresponse to elevated carbon dioxide. The ISME Journal,2012, 6(2): 259-272.
[35]
Karl T R, Trenberth K E. Modern global climate change.Science, 2003, 302(5651): 1719-1723.
[36]
Kelley A M, Fay P A, Polley H W, et al. Atmospheric CO2and soil extracellular enzyme activity: A meta-analysisand CO2 gradient experiment. Ecosphere, 2011, 2(8):1-20.
[37]
Jackson R B, Cook C W, Pippen J S, et al. Increased belowgroundbiomass and soil CO2 fluxes after a decade ofcarbon dioxide enrichment in a warm-temperate forest.Ecology, 2009, 90(12): 3352-3366.
[38]
Gill R A, Polley H W, Johnson H B, et al. Nonlineargrassland responses to past and future atmospheric CO2.Nature, 2002, 417: 279-282.
[39]
Carney K M, Hungate B A, Drake B G, et al. Altered soilmicrobial community at elevated CO2 leads to loss of soilcarbon. Proceedings of the National Academy of Sciences,2007, 104(12): 4990-4995.
[40]
Kandeler E, Mosier A R, Morgan J A, et al. Transient elevationof carbon dioxide modifies the microbial communitycomposition in a semi-arid grassland. Soil Biologyand Biochemistry, 2008, 40(1): 162-171.
[41]
Malchair S, De Boeck H J, Lemmens C M H M, et al. Diversity-function relationship of ammonia-oxidizing bacteriain soils among functional groups of grassland speciesunder climate warming. Applied Soil Ecology, 2010,44(1): 15-23.
[42]
Horz H-P, Rich V, Avrahami S, et al. Methane-OxidizingBacteria in a California Upland Grassland Soil: Diversityand Response to Simulated Global Change. Applied andEnvironmental Microbiology, 2005, 71(5): 2642-2652.
Van Gestel M, Merckx R, Vlassak K. Microbial biomassresponses to soil drying and rewetting: The fate offast-and slow-growing microorganisms in soils from differentclimates. Soil Biology and Biochemistry, 1993, 25(1): 109-123.
[46]
Schimel J P, Gulledge J M, Clein-Curley J S, et al. Moistureeffects on microbial activity and community structurein decomposing birch litter in the Alaskan taiga. SoilBiology and Biochemistry, 1999, 31(6): 831-838.
[47]
Bapiri A, Baath E, Rousk J. Drying-rewetting cycles affectfungal and bacterial growth differently in an arablesoil. Microbial Ecology, 2010, 60(2): 419-428.
[48]
Denef K, Six J, Bossuyt H, et al. Influence of dry-wet cycleson the interrelationship between aggregate, particulateorganic matter, and microbial community dynamics.Soil Biology and Biochemistry, 2001, 33(12-13):1599-1611.
[49]
Thomson B C, Ostle N J, McNamara N P, et al. Effects ofsieving, drying and rewetting upon soil bacterial communitystructure and respiration rates. Journal of MicrobiologicalMethods, 2010, 83(1): 69-73.
[50]
Horz H P, Barbrook A, Field C B, et al. Ammonia-oxidizingbacteria respond to multifactorial global change. Proceedingsof the National Academy of Sciences of theUnited States of America, 2004, 101(42): 15136-15141.
[51]
Fierer N, Schimel J P, Holden P A. Influence of drying-rewettingfrequency on soil bacterial community structure.Microbial Ecology, 2003, 45(1): 63-71.
[52]
Castro H F, Classen A T, Austin E E, et al. Soil microbialcommunity responses to multiple experimental climatechange drivers. Applied and Environmental Microbiology,2010, 76(4): 999-1007.
[53]
Cruz-Martinez K, Suttle K B, Brodie E L, et al. Despitestrong seasonal responses, soil microbial consortia aremore resilient to long-term changes in rainfall than overlyinggrassland. The ISME Journal, 2009, 3(6): 738-744.
[54]
Galloway J N, Townsend A R, Erisman J W, et al. Transformationof the nitrogen cycle: Recent trends, questions,and potential solutions. Science, 2008, 320: 889-892.
Smolander A, Kurka A, Kitunen V, et al. Microbial biomassC and N, and respiratory activity in soil of repeatedlylimed and N-and P-fertilized Norway spruce stands.Soil Biology and Biochemistry, 1994, 26(8): 957-962.
[57]
Kennedy N, Brodie E, Connolly J, et al. Impact of lime,nitrogen and plant species on bacterial community structurein grassland microcosms. Environmental Microbiology,2004, 6(10): 1070-1080.
[58]
Steenwerth K L, Jackson L E, Calderón F J, et al. Soil microbialcommunity composition and land use history incultivated and grassland ecosystems of coastal California.Soil Biology and Biochemistry, 2002, 34(11):1599-1611.
[59]
B??th E, Anderson T H. Comparison of soil fungal/bacterialratios in a pH gradient using physiological andPLFA-based techniques. Soil Biology and Biochemistry,2003, 35(7): 955-963.
Bardgett R D, Lovell R D, Hobbs P J, et al. Seasonalchanges in soil microbial communities along a fertilitygradient of temperate grasslands. Soil Biology and Biochemistry,1999, 31(7): 1021-1030.
[62]
Frey S D, Knorr M, Parrent J L, et al. Chronic nitrogenenrichment affects the structure and function of the soilmicrobial community in temperate hardwood and pineforests. Forest Ecology and Management, 2004, 196(1):159-171.
Yevdokimov I, Gattinger A, Buegger F, et al. Changes inmicrobial community structure in soil as a result of differentamounts of nitrogen fertilization. Biology and Fertilityof Soils, 2008, 44(8): 1103-1106.
[65]
Di H J, Cameron K C, Shen J P, et al. Ammonia-oxidizingbacteria and archaea grow under contrasting soil nitrogenconditions. FEMS Microbiology Ecology, 2010, 72(3): 386-394.
Yoshida L C, Allen E B. Response to ammonium and nitrateby a mycorrhizal annual invasive grass and nativeshrub in southern California. American Journal of Botany,2001, 88(8): 1430-1436.
[68]
Heil G, Werger M, De Mol W, et al. Capture of atmosphericammonium by grassland canopies. Science, 1988,239(4841): 764-765.
[69]
DeForest J L, Zak D R, Pregitzer K S, et al. Atmosphericnitrate deposition, microbial community composition,and enzyme activity in northern hardwood forests. SoilScience Society of America Journal, 2004, 68(1):132-138.
[70]
Blankinship J C, Niklaus P A, Hungate B A. A meta-analysisof responses of soil biota to global change. Oecologia,2011, 165(3): 1-13.
[71]
Gutknecht J L M, Field C B, Balser T C. Microbial communitiesand their responses to simulated global changefluctuate greatly over multiple years. Global Change Biology,2012, 18(7): 2256-2269.
[72]
Zavaleta E S, Shaw M R, Chiariello N R, et al. Additiveeffects of simulated climate changes, elevated CO2, andnitrogen deposition on grassland diversity. Proceedingsof the National Academy Sciences of United States ofAmerica, 2003, 100(13): 7650-7654.
[73]
Eisenhauer N, Cesarz S, Koller R, et al. Global change belowground:Impacts of elevated CO2, nitrogen, and summerdrought on soil food webs and biodiversity. GlobalChange Biology, 2012, 18(2): 435-447.
[74]
Gutknecht J L M, Field C B, Balser T C. Microbial communitiesand their responses to simulated global changefluctuate greatly over multiple years. Global Change Biology,2012, 18(7): 2256-2269.
[75]
Scurlock J M O, Johnson K, Olson R J. Estimating netprimary productivity from grassland biomass dynamicsmeasurements. Global Change Biology, 2002, 8(8):736-753.
Soussana J F, Loiseau P, Vuichard N, et al. Carbon cyclingand sequestration opportunities in temperate grasslands.Soil Use and Management, 2004, 20(2): 219-230.
Zavaleta E S, Shaw M R, Chiariello N R, et al. Additiveeffects of simulated climate changes, elevated CO2, andnitrogen deposition on grassland diversity. Proceedingsof the National Academy Sciences of United States ofAmerica, 2003, 100(13): 7650-7654.
[81]
Feng Q, Cheng G D, Mikami M. The carbon cycle of sandylands in China and its global significance. ClimaticChange, 2001, 48(4): 535-549.
[82]
Eisenhauer N, Cesarz S, Koller R, et al. Global change belowground:Impacts of elevated CO2, nitrogen, and summerdrought on soil food webs and biodiversity. GlobalChange Biology, 2012, 18(2): 435-447.