全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

国外低碳城市研究进展

DOI: 10.11820/dlkxjz.2010.12.001, PP. 1459-1469

Keywords: 低碳城市,低碳模型,国外研究进展,空间尺度,碳排放

Full-Text   Cite this paper   Add to My Lib

Abstract:

在人类应对全球气候变化的挑战中,低碳城市逐渐成为低碳经济与低碳社会的空间聚焦点。文章从城市碳排放驱动因素、低碳城市循环与代谢、低碳城市空间规划、低碳城市环境管治等四方面系统归纳了国外低碳城市研究的内容和模型方法,并对LMDI方法、Hybrid-EIO-LCA方法、CGE模型作了具体评述。可以认为,低碳城市研究在理论上,由可持续发展、循环经济转向低碳经济和社会论,由城市生态系统、共生城市、精明增长和公交导向细化为低碳社区的构建;在方法上,由单一计算转变到综合评估,由衍生方法借用转到低碳城市模型方法的提出;数据使用由估测数据转向明确的环境账户;空间尺度由城市个体向家庭、社区、园区、城市群等不同层面扩展;研究地域则从少数发达国家推广到发展中国家。基于低碳城市研究体系的不完备性和多学科交叉性、数据的不确定性、时空尺度的多样性等特点,当前研究应从城市共生和谐论出发,以微观尺度的调查数据为基础,综合利用现代空间信息技术,建立城市碳排放账户,对城市碳能源—经济—社会—环境(CEESE)系统的功能与机理、过程与控制以及关联与效应进行探索,创建低碳城市研究的理论与方法体系。

References

[1]  Department of Trade and Industry (DTI). UK Energy White Paper: Our Energy Future-creating A Low Carbon Economy. London: TSO, 2003: 1-142.
[2]  Gomi K, Shimada K, Matsuoka Y. Scenario study for a regional low-carbon society. Sustainability Science, 2007, 2 (1): 121-131.
[3]  United Nations. World Urbanization Prospects: The 2005 Revision. New York: United Nations, 2005: 1-196.
[4]  Galeotti M, Lanza A, Pauli F. Reassessing the environmental Kuznets curve for CO2 emission: A robustness exercise. Ecological Economics, 2006, 57(1): 152-163.
[5]  He J, Richard P. Environmental Kuznets curve for CO2 in Canada. Ecological Economics, 2009, 11(3): 1-11.
[6]  Martinez Z I, Bengochea M A. Pooled mean group estimation for an environmental Kuznets curve for CO2. Economic Letters, 2004, 82(1): 121-126.
[7]  Yang C, McCollum D, McCarthy R, et al. Meeting an 80% reduction in greenhouse gas emissions from transportation by 2050: A case study in California. Transportation Research Part D: Transport and Environment, 2009, 14(3): 147-156.
[8]  Yamaguchi Y, Shimoda Y, Mizuno M. Proposal of a modeling approach considering urban form for evaluation of city level energy management. Energy and Buildings, 2007, 39(5): 580-592.
[9]  Wu X C, Priyadarsini R, Eang L S. Benchmarking energy use and green house gas emissions in Singapore’s hotel industry. Energy Policy, 2010, 38(8): 4520-4527.
[10]  Ang B W. The LMDI approach to decomposition analysis: A practical guide. Energy Policy, 2005, 33(7): 867-871.
[11]  Greening L A, Ting M, Krackler T J. Effects of changes in residential end-uses and behavior on aggregate carbon intensity: Comparison of 10 OECD countries for the period 1970 through 1993. Energy Economics, 2001, 23(2): 153-178.
[12]  Greening L A. Effects of human behavior on aggregate carbon intensity of personal transportation: Comparison of 10 OECD countries for the period 1970-1993. Energy Economics, 2004, 26(1): 1-30.
[13]  Greening L A, Ting M, Davis W B. Decomposition of aggregate carbon intensity for freight: Trends from 10 OECD countries for the period 1971-1993. Energy Economics, 1999, 21(4): 331-361.
[14]  Folke C, Jansson A, Larsson J, et al. Ecosystem appropriation by cities. AMBIO, 1997, 26(3): 167-172.
[15]  Churkina G. Modeling the carbon cycle of urban systems. Ecological Modeling, 2008, 216(2): 107-113.
[16]  Pataki D E, Alig R J, Fung A S, et al. Urban ecosystems and the North American carbon cycle. Global Change Biology, 2006, 12(11): 1-11.
[17]  Andrews C J. Putting industrial ecology into place evolving roles for planners. Journal of the American Planning Association, 1999, 65(4): 364-375.
[18]  Deutz P. Producer responsibility in a sustainable development context: Ecological modernization or industrial ecology. The Geographical Journal, 2009, 175(4): 274-285.
[19]  Retzlaff R C. Green building assessment systems: A framework and comparison for planners. Journal of the American Planning Association, 2008, 74 (4): 505-519.
[20]  Crabtree L, Sustainable housing development in urban Australia: Exploring obstacles to and opportunities for ecocity efforts. Australian Geographer, 2005, 36(3): 333-350.
[21]  Urge-Vorsatz D, Harvey L D, Mirasgedis S, et al. Mitigating CO2 emissions from energy use in the world’s buildings. Building Research and Information, 2007, 35(4): 379-398.
[22]  Crabtreea L. Sustainability begins at home? An ecological exploration of sub/urban Australian community-focused housing initiatives. Geoforum, 2006, 37(4): 519-535.
[23]  Gibbs D. Prospects for an environmental economic geography: Linking ecological modernization and regulationist approaches. Economic Geography, 2006, 82(2): 193-215.
[24]  Boykoff M T, Bumpus A, Liverman D, et al. Theorizing the carbon economy: Introduction to the special issue. Environment and Planning A, 2009, 41(10): 2299-2304.
[25]  Bailey I, Wilson G A. Theorising transitional pathways in response to climate change: Technocentrism, ecocentrism, and the carbon economy. Environment and Planning A, 2009, 41(10): 2324-2341.
[26]  Rutherford S. Green governmentality: Insights and opportunities into the study of nature's role. Progress in Human Geography, 2007, 31(3): 291-307.
[27]  Lemos M C, Agrawal A. Environmental governance. Annual Review of Environment and Resources, 2006, 31: 297-325.
[28]  Barnett G. The consolations of‘neoliberalism’. Geoforum, 2005, 36(1): 7-12.
[29]  Boyd E. Governing the clean development mechanism: Global rhetoric versus local realities in carbon sequestration projects. Environment and Planning A, 2009, 41(10): 2380-2395.
[30]  Hayter R. Environmental economic geography. Geography Compass, 2008, 2(3): 831-850.
[31]  Caetanoa M, Gherardi D, Ribeiro G. Reduction of CO2 emission by optimally tracking a pre-defined target. Ecological Modelling, 2009, 220(19): 2536-2542.
[32]  Hultman N E. Geographic diversification of carbon risk: A methodology for assessing carbon investments using eddy correlation measurements. Global Environmental Change, 2006, 16(1): 58-72.
[33]  Castelnuovo E, Galeottic M, Gambarelli G, et al. Learningby-Doing vs. Learning by Researching in a model of climate change policy analysis. Ecological Economics, 2005, 54(2-3): 261-276.
[34]  Weiss M, Junginger M, Patel M K, et al. A review of experience curve analyses for energy demand technologies. Technological Forecasting & Social Change, 2009, 10(9): 1-18.
[35]  Manne A, Richels R. The impact of learning-by-doing on the timing and costs of CO2 abatement. Energy Economics, 2005, 46(3): 603-619.
[36]  Zwaana B, Gerlagha R, Klaassen G, et al. Endogenous technological change in climate change modeling. Energy Economics, 2002, 24(1): 1-19.
[37]  Bailey I. Market environmentalism, new environmental policy instruments, and climate policy in the United Kingdom and Germany. Annals of the Association of American Geographers, 2007, 97(3): 530-550.
[38]  Ang B W. Decomposition analysis for policymaking in energy: which is the preferred method? Energy Policy, 2004, 32(9): 1131-1139.
[39]  Ang B W, Huang H C, Mu A R. Properties and linkages of some index decomposition analysis methods. Energy Policy, 2009, 37(11): 4624-4632.
[40]  Rhee Hae-Chun, Chung Hyun-Sik. Change in CO2 emission and its transmissions between Korea and Japan using international input-output analysis. Ecological Economics, 2006, 58(4): 788-800.
[41]  Albrecht J, Francois D, Schoors K. A Shapley decomposition of carbon emissions without residuals. Energy Policy, 2002, 30(9): 727-736.
[42]  Maselli F, Gioli B, Chiesi Marta, et al. Validating an integrated strategy to model net land carbon exchange against aircraft flux measurements. Remote Sensing of Environment, 2010, 114(5): 1108-1116.
[43]  Gomi K, Shimada K, Matsuoka Y. A low-carbon scenario creation method for a local-scale economy and its application in Kyoto city. Energy Policy, 2009, 7(26): 1-14.
[44]  He Chunyang, Okada N, Zhang Qiaofeng, et al. Modelling dynamic urban expansion processes incorporating a potential model with cellular automata. Landscape and Urban Planning, 2008, 86(1): 79-91.
[45]  Santé I, García A M, Miranda D, et al. Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landscape and Urban Planning, 2010, 96(2): 108-122.
[46]  Rose A, Liao Shu-Yi. Modeling regional economic resilience to disasters: A computable general equilibrium analysis of water service disruptions. Journal of Regional Science, 2005, 45(1):75-112.
[47]  Phdungsilp A. Integrated energy and carbon modeling with a decision support system: Policy scenarios for low-carbon city development in Bangkok. Energy Policy, 2010, 38(9): 4808-4817.
[48]  Contaldi M, Gracceva F, Tosato G. Evaluation of green-certificates policies using the MARKAL-MACROItaly model. Energy Policy, 2007, 35(2): 797-808.
[49]  Park S H. Decomposition of industrial energy consumption: An alternative method. Energy Economics, 1992, 14 (4): 265-270.
[50]  Wiedmann T, Minx J, Barrett J, et al. Allocating ecological footprints to final consumption categories with inputoutput analysis. Ecological Economics, 2006, 56(1): 28-48.
[51]  Heijungs R, Suh S. Reformulation of matrix-based LCI: from product balance to process balance. Journal of Cleaner Production, 2006, 14(1): 47-51.
[52]  Shimada K, Tanaka Y, Gomi K, et al. Developing a long-term local society design methodology towards a low-carbon economy: An application to Shiga Prefecture in Japan. Energy Policy, 2007, 35 (9): 4688-4703.
[53]  Climate Alliance. Climate Alliance 2004/2005 annual report. Frankfurt: Muller, 2005.
[54]  California Environmental Protection Agency. Climate action team report to Governor Schwarzenegger and the legislature. California Environmental Protection Agency, 2006.
[55]  Sovacool B K, Brown M A. Twelve metropolitan carbon footprints: a preliminary comparative global assessment. Energy Policy, 2009, 10(1): 1-14.
[56]  Bumpus A, Liverman D, Accumulation by decarbonization and the governance of carbon offsets. Economic Geography, 2008, 84(2): 127-155.
[57]  Halifax, Scotia N. Industrial ecology and the sustainable of Canadian cities. The Conference Board of Canada, 2006.
[58]  Chin Siong H, Wee Kean F. Planning for low carbon cities: The case of Iskandar development region. Seoul, Toward Establishing Sustainable Planning and Governance II, 2007.
[59]  Tunc G. I, Turut-Asik S, Akbostanci E. A decomposition analysis of CO2 emissions from energy use: Turkish case. Energy Policy, 2009, 37(11): 4689-4699.
[60]  Department of Trade and Industry (DTI). UK Energy White Paper: Our Energy Future-creating A Low Carbon Economy. London: TSO, 2003: 1-142.
[61]  Gomi K, Shimada K, Matsuoka Y. Scenario study for a regional low-carbon society. Sustainability Science, 2007, 2 (1): 121-131.
[62]  United Nations. World Urbanization Prospects: The 2005 Revision. New York: United Nations, 2005: 1-196.
[63]  Lebel L, Garden P, Banaticla M R N, et al. Integrating carbon management into the development strategies of urbanizing regions in Asia. Journal of Industrial Ecology, 2007, 11(2): 61-81.
[64]  International Energy Agency. Energy Outlook. 2009, Paris.
[65]  Strachan, N, Pye S, Kannan R. The iterative contribution and relevance of modeling to UK energy policy. Energy Policy, 2009, 37(3): 850-860.
[66]  McEvoy D, Gibbs D C, Longhurst J W S. Urban sustainability: problems facing the "local" approach to carbonreduction strategies. Environment and Planning C: Government and Policy, 1998, 16(4): 423-432.
[67]  Streck C. New partnerships in global environmental policy: The clean development mechanism. Journal of Environment & Development, 2004, 13(3): 295-322.
[68]  Schlesinger H, Andrews J. Soil respiration and the global carbon cycle. Biogeochemistry, 2000, 48(1): 7-20.
[69]  Allaire S E, Dufour-L’Arrivee C, Lafond J A, et al. Carbon dioxide emissions by urban turfgrass areas. Canadian Journal of Soil Science, 2008, 88(4): 529-532.
[70]  Nowak D J, Crane D E. Carbon storage and sequestration by urban trees in the USA. Environmental Pollution, 2002, 116(3): 381-389.
[71]  Jo H K. Impacts of urban greenspace on offsetting carbon emissions for middle Korea. Journal of Environmental Management. 2002, 64(2): 115-126.
[72]  Nejadkoorki F, Nicholson K, Lake I, et al. An approach for modelling CO2 emissions from road traffic in urban areas. The Science of the Total Environment, 2008, 406 (1-2): 269-278.
[73]  Svirejeva H A, Schellnhuber H J, Pomaz V L. Urbanised territories as a specific component of the global carbon cycle. Ecological Modelling, 2004, 173(2-3): 295-312.
[74]  Svirejeva H A, Schellnhuber H J. Modelling carbon dynamics from urban land conversion: Fundamental model of city in relation to a local carbon cycle. Carbon Balance and Management, 2006, 1(8): 1-9.
[75]  Svirejeva H A, Schellnhuber H J. Urban expansion and its contribution to the regional carbon emissions: using the model based on the population density distribution. Ecological Modeling, 2008, 216(2): 208-216.
[76]  Pouyata R, Groffmanb P, Yesilonisc I, Hernandezd L. Soil carbon pools and fluxes in urban ecosystems. Environmental Pollution, 2002, 116 (s1):107-118.
[77]  Pataki D E, Bowling D R, Ehleringer J R. Seasonal cycle of carbon dioxide and its isotopic composition in an urban atmosphere: Anthropogenic and biogenic effects. Journal of Geophysical Research, 2003, 108(23): 1-8.
[78]  Pataki D E, Bowling D R, Ehleringer J R, et al. High resolution atmospheric monitoring of urban carbon dioxide sources. Geophysical Research Letters, 2006, 33(3): 1-5.
[79]  Dieleman F M, Dust M J, Spit T. Planning the compact city: The Randstad Holland experience. European Planning Studies, 1999, 7(5): 605-621.
[80]  Masanobu K, Kenji D. Multiagent land-use and transport model for the policy evaluation of a compact city. Environment & Planning B: Planning & Design, 2005, 32(4): 485-504.
[81]  Shim G E, Rhee S M, Ahn K H, et al. The relationship between the characteristics of transportation energy consumption and urban form. The Annals of Regional Science, 2006, 40(2): 351-357.
[82]  Jabareen Y R. Sustainable urban forms: Their typologies, models, and concepts. Journal of Planning Education and Research, 2006, 26(1): 38-52.
[83]  Andrews C J. Putting industrial ecology into place evolving roles for planners. Journal of the American Planning Association, 1999, 65(4): 364-375.
[84]  Deutz P. Producer responsibility in a sustainable development context: Ecological modernization or industrial ecology. The Geographical Journal, 2009, 175(4): 274-285.
[85]  Gibbs D C, Deutz P, Proctor A. Industrial ecology and eco-industrial development: A new paradigm for local and regional development? Regional Studies, 2005, 39 (2): 171-183(13).
[86]  McManus P, Gibbs D. Industrial ecosystems? The use of tropes in the literature of industrial ecology and eco-industrial parks. Progress in Human Geography, 2008, 32 (4): 525-540.
[87]  Deutz P, Gibbs D. Industrial ecology and regional development: Eco-industrial development as cluster policy. Regional Studies, 2008, 42(10): 1313-1328.
[88]  van Diepen A, Voogd H. Sustainability and planning: Does urban form matter? International Journal of Sustainable Development, 2001, 4(1): 59-74.
[89]  van Diepen A. Households and their spatial-energetic practices. Searching for sustainable urban forms. Journal of Housing and the Built Environment, 2001, 16(3-4): 349-351.
[90]  Moll H C, Noorman K J, Kok R, et al. Pursuing more sustainable consumption by analyzing household metabolism in European countries and cities. Journal of Industrial Ecology, 2005, 9(1-2): 259-275.
[91]  Seyfang G. Community action for sustainable housing: Building a low-carbon future. Energy Policy, 2010, 38 (12): 7624-7633.
[92]  Retzlaff R C. Green building assessment systems: A framework and comparison for planners. Journal of the American Planning Association, 2008, 74 (4): 505-519.
[93]  Crabtree L, Sustainable housing development in urban Australia: Exploring obstacles to and opportunities for ecocity efforts. Australian Geographer, 2005, 36(3): 333-350.
[94]  Urge-Vorsatz D, Harvey L D, Mirasgedis S, et al. Mitigating CO2 emissions from energy use in the world’s buildings. Building Research and Information, 2007, 35(4): 379-398.
[95]  Crabtreea L. Sustainability begins at home? An ecological exploration of sub/urban Australian community-focused housing initiatives. Geoforum, 2006, 37(4): 519-535.
[96]  Gibbs D. Prospects for an environmental economic geography: Linking ecological modernization and regulationist approaches. Economic Geography, 2006, 82(2): 193-215.
[97]  Boykoff M T, Bumpus A, Liverman D, et al. Theorizing the carbon economy: Introduction to the special issue. Environment and Planning A, 2009, 41(10): 2299-2304.
[98]  Bailey I, Wilson G A. Theorising transitional pathways in response to climate change: Technocentrism, ecocentrism, and the carbon economy. Environment and Planning A, 2009, 41(10): 2324-2341.
[99]  Rutherford S. Green governmentality: Insights and opportunities into the study of nature's role. Progress in Human Geography, 2007, 31(3): 291-307.
[100]  Lemos M C, Agrawal A. Environmental governance. Annual Review of Environment and Resources, 2006, 31: 297-325.
[101]  Barnett G. The consolations of‘neoliberalism’. Geoforum, 2005, 36(1): 7-12.
[102]  Boyd E. Governing the clean development mechanism: Global rhetoric versus local realities in carbon sequestration projects. Environment and Planning A, 2009, 41(10): 2380-2395.
[103]  Hayter R. Environmental economic geography. Geography Compass, 2008, 2(3): 831-850.
[104]  Caetanoa M, Gherardi D, Ribeiro G. Reduction of CO2 emission by optimally tracking a pre-defined target. Ecological Modelling, 2009, 220(19): 2536-2542.
[105]  Hultman N E. Geographic diversification of carbon risk: A methodology for assessing carbon investments using eddy correlation measurements. Global Environmental Change, 2006, 16(1): 58-72.
[106]  Castelnuovo E, Galeottic M, Gambarelli G, et al. Learningby-Doing vs. Learning by Researching in a model of climate change policy analysis. Ecological Economics, 2005, 54(2-3): 261-276.
[107]  Weiss M, Junginger M, Patel M K, et al. A review of experience curve analyses for energy demand technologies. Technological Forecasting & Social Change, 2009, 10(9): 1-18.
[108]  Manne A, Richels R. The impact of learning-by-doing on the timing and costs of CO2 abatement. Energy Economics, 2005, 46(3): 603-619.
[109]  Zwaana B, Gerlagha R, Klaassen G, et al. Endogenous technological change in climate change modeling. Energy Economics, 2002, 24(1): 1-19.
[110]  Bailey I. Market environmentalism, new environmental policy instruments, and climate policy in the United Kingdom and Germany. Annals of the Association of American Geographers, 2007, 97(3): 530-550.
[111]  Ang B W. Decomposition analysis for policymaking in energy: which is the preferred method? Energy Policy, 2004, 32(9): 1131-1139.
[112]  Ang B W, Huang H C, Mu A R. Properties and linkages of some index decomposition analysis methods. Energy Policy, 2009, 37(11): 4624-4632.
[113]  Rhee Hae-Chun, Chung Hyun-Sik. Change in CO2 emission and its transmissions between Korea and Japan using international input-output analysis. Ecological Economics, 2006, 58(4): 788-800.
[114]  Albrecht J, Francois D, Schoors K. A Shapley decomposition of carbon emissions without residuals. Energy Policy, 2002, 30(9): 727-736.
[115]  McGregor P G, Swales J K, Turner K. The CO2 'trade balance' between Scotland and the rest of the UK: Performing a multi-region environmental input–output analysis with limited data. Ecological Economics, 2008, 66(4): 662-673.
[116]  Kaya Y. Impact of carbon dioxide emission control on GNP growth: interpretation of proposed scenarios. Paris, IPCC Energy and Industry Subgroup, Response StrategiesWorking Group, 1990.
[117]  Grimmonda S B, Kinga T S, Cropleya F D, et al. Localscale fluxes of carbon dioxide in urban environments: methodological challenges and results from Chicago. Environmental Pollution, 2002, 116 (1): 243-254.
[118]  Tukker A. Life cycle assessment as a tool in environmen tal impact assessment. Environmental Impact Assessment Review, 2000, 20(4): 435-456.
[119]  Leontief W, Ford D. Environmental repercussions and the economic structure: an input-output approach. The Review of Economics and Statistics, 1970, 52(3): 262-271.
[120]  Chin Siong H, Wee Kean F. Planning for low carbon cities: The case of Iskandar development region. Seoul, Toward Establishing Sustainable Planning and Governance II, 2007.
[121]  Tunc G. I, Turut-Asik S, Akbostanci E. A decomposition analysis of CO2 emissions from energy use: Turkish case. Energy Policy, 2009, 37(11): 4689-4699.
[122]  Lebel L, Garden P, Banaticla M R N, et al. Integrating carbon management into the development strategies of urbanizing regions in Asia. Journal of Industrial Ecology, 2007, 11(2): 61-81.
[123]  International Energy Agency. Energy Outlook. 2009, Paris.
[124]  Strachan, N, Pye S, Kannan R. The iterative contribution and relevance of modeling to UK energy policy. Energy Policy, 2009, 37(3): 850-860.
[125]  McEvoy D, Gibbs D C, Longhurst J W S. Urban sustainability: problems facing the "local" approach to carbonreduction strategies. Environment and Planning C: Government and Policy, 1998, 16(4): 423-432.
[126]  Streck C. New partnerships in global environmental policy: The clean development mechanism. Journal of Environment & Development, 2004, 13(3): 295-322.
[127]  Steven S, Sijm J. Carbon trading in the policy mix. Oxford Review of Economic Policy, 2003, 19(3): 420- 437.
[128]  Dhakal S, Betsill M M. Challenges of Urban and Regional Carbon Management and the Scientific Response. Local Environment, 2007, 12(5): 549-555.
[129]  Baranzini A, Goldemberg J, Speck S. A future for carbon taxes. Ecological Economics, 2000, 32 (3): 395-412
[130]  While A, Jonas A E G, Gibbs D. From sustainable development to carbon control: Eco-state restructuring and the politics of urban and regional development. Transactions of the Institute of British Geographers, 2009, 35(1): 7693.
[131]  Garg A, Bhattachary S, Shukla P R, et al. Regional and sectoral assessment of greenhouse gas emissions in India. Atmospheric Environment, 2001, 35(15): 2679-2695.
[132]  Bristowa A L, Tight M, Pridmore A, et al. Developing pathways to low carbon land-based passenger transport in Great Britain by 2050. Energy Policy, 2008, 36(9): 3427-3435.
[133]  Diakoulaki D, Mandaraka M. Decomposition analysis for assessing the progress in decoupling industrial growth from CO2 emissions in the EU manufacturing sector. Energy Economics, 2007, 29(4): 636-664.
[134]  Dimoudi A, Tompa C. Energy and environmental indicators related to construction of office buildings. Resources, Conservation and Recycling, 2008, 53(1/2): 86-95.
[135]  Schlesinger H, Andrews J. Soil respiration and the global carbon cycle. Biogeochemistry, 2000, 48(1): 7-20.
[136]  Allaire S E, Dufour-L’Arrivee C, Lafond J A, et al. Carbon dioxide emissions by urban turfgrass areas. Canadian Journal of Soil Science, 2008, 88(4): 529-532.
[137]  Nowak D J, Crane D E. Carbon storage and sequestration by urban trees in the USA. Environmental Pollution, 2002, 116(3): 381-389.
[138]  Jo H K. Impacts of urban greenspace on offsetting carbon emissions for middle Korea. Journal of Environmental Management. 2002, 64(2): 115-126.
[139]  Nejadkoorki F, Nicholson K, Lake I, et al. An approach for modelling CO2 emissions from road traffic in urban areas. The Science of the Total Environment, 2008, 406 (1-2): 269-278.
[140]  Svirejeva H A, Schellnhuber H J, Pomaz V L. Urbanised territories as a specific component of the global carbon cycle. Ecological Modelling, 2004, 173(2-3): 295-312.
[141]  Svirejeva H A, Schellnhuber H J. Modelling carbon dynamics from urban land conversion: Fundamental model of city in relation to a local carbon cycle. Carbon Balance and Management, 2006, 1(8): 1-9.
[142]  Svirejeva H A, Schellnhuber H J. Urban expansion and its contribution to the regional carbon emissions: using the model based on the population density distribution. Ecological Modeling, 2008, 216(2): 208-216.
[143]  Pouyata R, Groffmanb P, Yesilonisc I, Hernandezd L. Soil carbon pools and fluxes in urban ecosystems. Environmental Pollution, 2002, 116 (s1):107-118.
[144]  Pataki D E, Bowling D R, Ehleringer J R. Seasonal cycle of carbon dioxide and its isotopic composition in an urban atmosphere: Anthropogenic and biogenic effects. Journal of Geophysical Research, 2003, 108(23): 1-8.
[145]  Pataki D E, Bowling D R, Ehleringer J R, et al. High resolution atmospheric monitoring of urban carbon dioxide sources. Geophysical Research Letters, 2006, 33(3): 1-5.
[146]  Wiedmann T, Minx J. A definition of“Carbon Footprint”// Pertsova C C. Ecological Economics Research Trends. Hauppauge NY: Nova science publishers, 2007.
[147]  Ramaswami A, Hillman T. A demand-centered, hybrid life-cycle methodology for city- scale greenhouse gas inventories. Environmental science & technology, 2008, 42 (17): 6455-6461.
[148]  Hillman T, Ramaswami A. Greenhouse Gas Emission Footprints and Energy Use Benchmarks for Eight U.S. Cities. Environmental science & technology, 2010, 44(6): 1902-1910.
[149]  Peters G P, Hertwich E G. CO2 embodied in international trade with implications for global climate policy. Environmental Science & Technology, 2008, 42(5): 1401-1407.
[150]  Dieleman F M, Dust M J, Spit T. Planning the compact city: The Randstad Holland experience. European Planning Studies, 1999, 7(5): 605-621.
[151]  Masanobu K, Kenji D. Multiagent land-use and transport model for the policy evaluation of a compact city. Environment & Planning B: Planning & Design, 2005, 32(4): 485-504.
[152]  Shim G E, Rhee S M, Ahn K H, et al. The relationship between the characteristics of transportation energy consumption and urban form. The Annals of Regional Science, 2006, 40(2): 351-357.
[153]  Jabareen Y R. Sustainable urban forms: Their typologies, models, and concepts. Journal of Planning Education and Research, 2006, 26(1): 38-52.
[154]  Rickaby P A. Six settlement patterns compared. Environment and Planning B: Planning and Design, 1987, 14(2): 193-223.
[155]  Kenworthy J R. The eco-city: Ten key transport and planning dimensions for sustainable city development. Environment and Urbanization, 2006, 18(1): 67-85.
[156]  Roseland M. Sustainable community development: Integrating environmental, economic, and social objectives. Progress in Planning, 2000, 54(2): 73-132.
[157]  Heiskanen E, Johnson M, Robinson S, et al. Low-carbon communities as a context for individual behavioral change. Energy Policy, 2009, 7(2): 1-10.
[158]  Raco M. Sustainable development, rolled-out neoliberalism and sustainable communities. Antipode, 2005, 37(2): 324-347.
[159]  Gibbs D C, Deutz P, Proctor A. Industrial ecology and eco-industrial development: A new paradigm for local and regional development? Regional Studies, 2005, 39 (2): 171-183(13).
[160]  McManus P, Gibbs D. Industrial ecosystems? The use of tropes in the literature of industrial ecology and eco-industrial parks. Progress in Human Geography, 2008, 32 (4): 525-540.
[161]  Deutz P, Gibbs D. Industrial ecology and regional development: Eco-industrial development as cluster policy. Regional Studies, 2008, 42(10): 1313-1328.
[162]  van Diepen A, Voogd H. Sustainability and planning: Does urban form matter? International Journal of Sustainable Development, 2001, 4(1): 59-74.
[163]  van Diepen A. Households and their spatial-energetic practices. Searching for sustainable urban forms. Journal of Housing and the Built Environment, 2001, 16(3-4): 349-351.
[164]  Moll H C, Noorman K J, Kok R, et al. Pursuing more sustainable consumption by analyzing household metabolism in European countries and cities. Journal of Industrial Ecology, 2005, 9(1-2): 259-275.
[165]  Seyfang G. Community action for sustainable housing: Building a low-carbon future. Energy Policy, 2010, 38 (12): 7624-7633.
[166]  Boyd G A, Hanson D A, Sterner T. Decomposition of changes in energy intensity: A comparison of the Divisia index and other methods. Energy Economics, 1988, 10 (4): 309-312.
[167]  Ang B W, Lee S Y. Decomposition of industrial energy consumption: Some methodological and application issues. Energy Economics, 1994, 16(2): 83-92.
[168]  Liu X Q, Ang B W, Ong H L. The application of Divisia index to the decomposition of changes in industrial energy consumption. The Energy Journal, 1992, 13(4): 161-177.
[169]  McGregor P G, Swales J K, Turner K. The CO2 'trade balance' between Scotland and the rest of the UK: Performing a multi-region environmental input-output analysis with limited data. Ecological Economics, 2008, 66(4): 662-673.
[170]  Kaya Y. Impact of carbon dioxide emission control on GNP growth: interpretation of proposed scenarios. Paris, IPCC Energy and Industry Subgroup, Response StrategiesWorking Group, 1990.
[171]  Grimmonda S B, Kinga T S, Cropleya F D, et al. Localscale fluxes of carbon dioxide in urban environments: methodological challenges and results from Chicago. Environmental Pollution, 2002, 116 (1): 243-254.
[172]  Tukker A. Life cycle assessment as a tool in environmen tal impact assessment. Environmental Impact Assessment Review, 2000, 20(4): 435-456.
[173]  Leontief W, Ford D. Environmental repercussions and the economic structure: an input-output approach. The Review of Economics and Statistics, 1970, 52(3): 262-271.
[174]  Fong W K, Matsumoto H, Lun Y F, et al. System dynamic model as decision making tool in urban planning from the perspective of urban energy consumption//Seminar Proceedings of the 3rd Seminar of JSPS-VCC (group VII). Skudai: Universiti Teknology Malaysia, 2007.
[175]  LI X, YEH A G O. Modelling sustainable urban development by the integration of constrained cellular automata and GIS. Geographical Information Science, 2000, 14(2): 131-152.
[176]  Shin H C, Park J W, Kim H S, et al. Environmental and Economic Assessment of landfill gas electricity generation in Korea using LEAP model. Energy Policy, 2005, 33 (10): 1261-1270.
[177]  Glu G S K. Environmental taxation and economic effects: a computable general equilibrium analysis for Turkey. Journal of Policy Modeling, 2003, 25(8): 795-810.
[178]  Ang B W, Liu F L, Chew E P. Perfect decomposition techniques in energy and environmental analysis. Energy Policy, 2003, 31(14): 1561-1566.
[179]  Ang B W, Liu Na. Negative-value problems of the logarithmic mean Divisia index decomposition approach. Energy Policy, 2007, 35(1): 739-742.
[180]  Ang B W, Liu Na. Handling zero values in the logarithmic mean Divisia index decomposition approach. Energy Policy, 2007, 35(1): 238-246.
[181]  Joshi S. Product environmental life-cycle assessment us-ing inputoutput techniques. Journal of Industrial Ecology, 2000, 3(2-3): 95-120.
[182]  Greater London Authority. Green Light to Clean Power: The Mayor’s Energy Strategy. London: Greater London Authority, 2004: 37-46.
[183]  Galeotti M, Lanza A, Pauli F. Reassessing the environmental Kuznets curve for CO2 emission: A robustness exercise. Ecological Economics, 2006, 57(1): 152-163.
[184]  He J, Richard P. Environmental Kuznets curve for CO2 in Canada. Ecological Economics, 2009, 11(3): 1-11.
[185]  Martinez Z I, Bengochea M A. Pooled mean group estimation for an environmental Kuznets curve for CO2. Economic Letters, 2004, 82(1): 121-126.
[186]  Steven S, Sijm J. Carbon trading in the policy mix. Oxford Review of Economic Policy, 2003, 19(3): 420- 437.
[187]  Dhakal S, Betsill M M. Challenges of Urban and Regional Carbon Management and the Scientific Response. Local Environment, 2007, 12(5): 549-555.
[188]  Baranzini A, Goldemberg J, Speck S. A future for carbon taxes. Ecological Economics, 2000, 32 (3): 395-412
[189]  While A, Jonas A E G, Gibbs D. From sustainable development to carbon control: Eco-state restructuring and the politics of urban and regional development. Transactions of the Institute of British Geographers, 2009, 35(1): 7693.
[190]  Garg A, Bhattachary S, Shukla P R, et al. Regional and sectoral assessment of greenhouse gas emissions in India. Atmospheric Environment, 2001, 35(15): 2679-2695.
[191]  Bristowa A L, Tight M, Pridmore A, et al. Developing pathways to low carbon land-based passenger transport in Great Britain by 2050. Energy Policy, 2008, 36(9): 3427-3435.
[192]  Diakoulaki D, Mandaraka M. Decomposition analysis for assessing the progress in decoupling industrial growth from CO2 emissions in the EU manufacturing sector. Energy Economics, 2007, 29(4): 636-664.
[193]  Dimoudi A, Tompa C. Energy and environmental indicators related to construction of office buildings. Resources, Conservation and Recycling, 2008, 53(1/2): 86-95.
[194]  Yang C, McCollum D, McCarthy R, et al. Meeting an 80% reduction in greenhouse gas emissions from transportation by 2050: A case study in California. Transportation Research Part D: Transport and Environment, 2009, 14(3): 147-156.
[195]  Yamaguchi Y, Shimoda Y, Mizuno M. Proposal of a modeling approach considering urban form for evaluation of city level energy management. Energy and Buildings, 2007, 39(5): 580-592.
[196]  Wu X C, Priyadarsini R, Eang L S. Benchmarking energy use and green house gas emissions in Singapore’s hotel industry. Energy Policy, 2010, 38(8): 4520-4527.
[197]  Ang B W. The LMDI approach to decomposition analysis: A practical guide. Energy Policy, 2005, 33(7): 867-871.
[198]  Greening L A, Ting M, Krackler T J. Effects of changes in residential end-uses and behavior on aggregate carbon intensity: Comparison of 10 OECD countries for the period 1970 through 1993. Energy Economics, 2001, 23(2): 153-178.
[199]  Greening L A. Effects of human behavior on aggregate carbon intensity of personal transportation: Comparison of 10 OECD countries for the period 1970-1993. Energy Economics, 2004, 26(1): 1-30.
[200]  Greening L A, Ting M, Davis W B. Decomposition of aggregate carbon intensity for freight: Trends from 10 OECD countries for the period 1971-1993. Energy Economics, 1999, 21(4): 331-361.
[201]  Folke C, Jansson A, Larsson J, et al. Ecosystem appropriation by cities. AMBIO, 1997, 26(3): 167-172.
[202]  Churkina G. Modeling the carbon cycle of urban systems. Ecological Modeling, 2008, 216(2): 107-113.
[203]  Pataki D E, Alig R J, Fung A S, et al. Urban ecosystems and the North American carbon cycle. Global Change Biology, 2006, 12(11): 1-11.
[204]  Wiedmann T, Minx J. A definition of“Carbon Footprint”// Pertsova C C. Ecological Economics Research Trends. Hauppauge NY: Nova science publishers, 2007.
[205]  Ramaswami A, Hillman T. A demand-centered, hybrid life-cycle methodology for city- scale greenhouse gas inventories. Environmental science & technology, 2008, 42 (17): 6455-6461.
[206]  Hillman T, Ramaswami A. Greenhouse Gas Emission Footprints and Energy Use Benchmarks for Eight U.S. Cities. Environmental science & technology, 2010, 44(6): 1902-1910.
[207]  Peters G P, Hertwich E G. CO2 embodied in international trade with implications for global climate policy. Environmental Science & Technology, 2008, 42(5): 1401-1407.
[208]  Rickaby P A. Six settlement patterns compared. Environment and Planning B: Planning and Design, 1987, 14(2): 193-223.
[209]  Kenworthy J R. The eco-city: Ten key transport and planning dimensions for sustainable city development. Environment and Urbanization, 2006, 18(1): 67-85.
[210]  Roseland M. Sustainable community development: Integrating environmental, economic, and social objectives. Progress in Planning, 2000, 54(2): 73-132.
[211]  Heiskanen E, Johnson M, Robinson S, et al. Low-carbon communities as a context for individual behavioral change. Energy Policy, 2009, 7(2): 1-10.
[212]  Raco M. Sustainable development, rolled-out neoliberalism and sustainable communities. Antipode, 2005, 37(2): 324-347.
[213]  Maselli F, Gioli B, Chiesi Marta, et al. Validating an integrated strategy to model net land carbon exchange against aircraft flux measurements. Remote Sensing of Environment, 2010, 114(5): 1108-1116.
[214]  Gomi K, Shimada K, Matsuoka Y. A low-carbon scenario creation method for a local-scale economy and its application in Kyoto city. Energy Policy, 2009, 7(26): 1-14.
[215]  He Chunyang, Okada N, Zhang Qiaofeng, et al. Modelling dynamic urban expansion processes incorporating a potential model with cellular automata. Landscape and Urban Planning, 2008, 86(1): 79-91.
[216]  Santé I, García A M, Miranda D, et al. Cellular automata models for the simulation of real-world urban processes: A review and analysis. Landscape and Urban Planning, 2010, 96(2): 108-122.
[217]  Rose A, Liao Shu-Yi. Modeling regional economic resilience to disasters: A computable general equilibrium analysis of water service disruptions. Journal of Regional Science, 2005, 45(1):75-112.
[218]  Phdungsilp A. Integrated energy and carbon modeling with a decision support system: Policy scenarios for low-carbon city development in Bangkok. Energy Policy, 2010, 38(9): 4808-4817.
[219]  Contaldi M, Gracceva F, Tosato G. Evaluation of green-certificates policies using the MARKAL-MACROItaly model. Energy Policy, 2007, 35(2): 797-808.
[220]  Park S H. Decomposition of industrial energy consumption: An alternative method. Energy Economics, 1992, 14 (4): 265-270.
[221]  Boyd G A, Hanson D A, Sterner T. Decomposition of changes in energy intensity: A comparison of the Divisia index and other methods. Energy Economics, 1988, 10 (4): 309-312.
[222]  Ang B W, Lee S Y. Decomposition of industrial energy consumption: Some methodological and application issues. Energy Economics, 1994, 16(2): 83-92.
[223]  Liu X Q, Ang B W, Ong H L. The application of Divisia index to the decomposition of changes in industrial energy consumption. The Energy Journal, 1992, 13(4): 161-177.
[224]  Wiedmann T, Minx J, Barrett J, et al. Allocating ecological footprints to final consumption categories with inputoutput analysis. Ecological Economics, 2006, 56(1): 28-48.
[225]  Heijungs R, Suh S. Reformulation of matrix-based LCI: from product balance to process balance. Journal of Cleaner Production, 2006, 14(1): 47-51.
[226]  Shimada K, Tanaka Y, Gomi K, et al. Developing a long-term local society design methodology towards a low-carbon economy: An application to Shiga Prefecture in Japan. Energy Policy, 2007, 35 (9): 4688-4703.
[227]  Fong W K, Matsumoto H, Lun Y F, et al. System dynamic model as decision making tool in urban planning from the perspective of urban energy consumption//Seminar Proceedings of the 3rd Seminar of JSPS-VCC (group VII). Skudai: Universiti Teknology Malaysia, 2007.
[228]  LI X, YEH A G O. Modelling sustainable urban development by the integration of constrained cellular automata and GIS. Geographical Information Science, 2000, 14(2): 131-152.
[229]  Shin H C, Park J W, Kim H S, et al. Environmental and Economic Assessment of landfill gas electricity generation in Korea using LEAP model. Energy Policy, 2005, 33 (10): 1261-1270.
[230]  Glu G S K. Environmental taxation and economic effects: a computable general equilibrium analysis for Turkey. Journal of Policy Modeling, 2003, 25(8): 795-810.
[231]  Ang B W, Liu F L, Chew E P. Perfect decomposition techniques in energy and environmental analysis. Energy Policy, 2003, 31(14): 1561-1566.
[232]  Ang B W, Liu Na. Negative-value problems of the logarithmic mean Divisia index decomposition approach. Energy Policy, 2007, 35(1): 739-742.
[233]  Ang B W, Liu Na. Handling zero values in the logarithmic mean Divisia index decomposition approach. Energy Policy, 2007, 35(1): 238-246.
[234]  Joshi S. Product environmental life-cycle assessment us-ing inputoutput techniques. Journal of Industrial Ecology, 2000, 3(2-3): 95-120.
[235]  Greater London Authority. Green Light to Clean Power: The Mayor’s Energy Strategy. London: Greater London Authority, 2004: 37-46.
[236]  Climate Alliance. Climate Alliance 2004/2005 annual report. Frankfurt: Muller, 2005.
[237]  California Environmental Protection Agency. Climate action team report to Governor Schwarzenegger and the legislature. California Environmental Protection Agency, 2006.
[238]  Sovacool B K, Brown M A. Twelve metropolitan carbon footprints: a preliminary comparative global assessment. Energy Policy, 2009, 10(1): 1-14.
[239]  Bumpus A, Liverman D, Accumulation by decarbonization and the governance of carbon offsets. Economic Geography, 2008, 84(2): 127-155.
[240]  Halifax, Scotia N. Industrial ecology and the sustainable of Canadian cities. The Conference Board of Canada, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133