全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

2000-2010年西伯利亚地表覆盖变化特征——基于GlobeLand30的分析

DOI: 10.18306/dlkxjz.2015.10.013, PP. 1324-1333

Keywords: 地表覆盖,地表覆盖变化,GlobeLand30,西伯利亚

Full-Text   Cite this paper   Add to My Lib

Abstract:

西伯利亚是全球环境变化的重要敏感性区域,但以往缺乏该区域中高分辨率地表覆盖数据,对其地表覆盖的整体分布与变化缺乏深入的认识。本文利用中国新近研制的2000、2010年两期30m分辨率地表覆盖数据产品GlobeLand30,对2000-2010年西伯利亚地表覆盖的空间分布格局、变化幅度、区域差异及主要地类的变化原因进行了综合分析。研究发现①西伯利亚地表覆盖的空间分布现状具有明显的地带性特征。②10年间,西伯利亚地区地表覆盖整体变化幅度较大,其中林地及草地呈显著缩减、湿地呈较大幅度增加、耕地呈微弱减少、人造地表呈增加态势。③10年间,西伯利亚地表覆盖变化具有显著的区域差异性。变化最显著的为西西伯利亚地区,其中以湿地增加最明显,主要分布于鄂毕河—叶尼塞河流域,林地、草地及耕地减少集中于西伯利亚西南部。④人类活动和气候变暖是引发西伯利亚地表覆盖变化的主要原因。大规模林地砍伐导致林地减少;冰冻层消融,林地、草地和水体向湿地的转化是湿地增加的主要原因;耕地的人为废弃和撂荒导致耕地面积有所减少。

References

[1]  1 曹鑫, 陈军, 陈利军, 等. 2014. 全球陆表水体空间格局与波动初步分析[J]. 中国科学: 地球科学, 44(8): 1661-1070.
[2]  1 [Cao X, Chen J, Chen L J, et al.2014. Preliminary analysis of spatiotemporal pattern of global land surface water[J]. Science China: Earth Sciences, 57(10): 2330-2339.]
[3]  2 陈军, 陈晋, 宫鹏, 等. 2011. 全球地表覆盖高分辨率遥感制图[J]. 地理信息世界, 9(2): 12-14.
[4]  2 [Chen J, Chen J, Gong P, et al.2011. Higher resolution global land cover mapping[J]. Geomatics World, 9(2): 12-14.]
[5]  3 陈军, 陈晋, 廖安平, 等. 2014. 全球30m地表覆盖遥感制图的总体技术[J]. 测绘学报, 43(6): 551-557.
[6]  3 [Chen J, Chen J, Liao A P, et al.2014. Concepts and key techniques for 30 m global land cover mapping[J]. Acta Geodaetica et Cartographica Sinica, 43(6): 551-557.]
[7]  4 初祥. 2001. 俄罗斯西伯利亚森林工业现状与发展趋势[J]. 东欧中亚市场研究, (1): 42-47.
[8]  4 [Chu X.2001. Eluosi xiboliya senlin gongye xianzhuang yu fazhan qushi[J]. East European, Russian & Central Asian Market Studies, (1): 42-47.]
[9]  5 范纯. 2010. 俄罗斯环境政策评析[J]. 俄罗斯中亚东欧研究, (6): 19-25.
[10]  5 [Fan C.2010. Analysis of Russia's environment policy[J]. Russian, Central Asian & East European Studies, (6): 19-25.]
[11]  6 刘纪远, 刘明亮, 庄大方, 等. 2002. 中国近期土地利用变化的空间格局分析[J]. 中国科学: 地球科学, 32(12): 1031-1040.
[12]  6 [Liu J Y, Liu M L, Zhuang D F, et al.2002. Zhongguo jinqi tudi liyong bianhua de kongjian geju fenxi[J]. Science in China: Earth Sciences, 32(12): 1031-1040.]
[13]  7 刘纪远, 张增祥, 徐新良, 等. 2009. 21世纪初中国土地利用变化的空间格局与驱动力分析[J]. 地理学报, 64(12): 1411-1420.
[14]  7 [Liu J Y, Zhang Z X, Xu X L, et al.2009. Spatial patterns and driving forces of land use change in China in the early 21st century[J]. Acta Geographica Sinica, 64(12): 1411-1420.]
[15]  8 刘纪远, 张增祥, 庄大方, 等. 2003. 20世纪90年代中国土地利用变化时空特征及其成因分析[J]. 地理研究, 22(1): 1-12.
[16]  8 [Liu J Y, Zhang Z X, Zhuang D F, et al.2003. A study on the spatial-temporal dynamic changes of land-use and driving forces analyses of China in the 1990s[J]. Geographical Research, 22(1): 1-12.]
[17]  9 刘子刚, 马学慧. 2006. 世界最大的泥炭地: 俄罗斯瓦休甘泥炭沼泽[J]. 湿地科学与管理, 2(3): 62-63.
[18]  9 [Liu Z G, Ma X H.2006. Shijie zuida de nitandi: Eluosi waxiugan nitan zhaoze[J]. Wetland Science & Management, 2(3): 62-63.]
[19]  10 马友君. 2010. 西伯利亚农业发展现状及趋势[J]. 西伯利亚研究, 37(1): 27-31.
[20]  10 [Ma Y J.2010. Present situation and tendency of Siberian agricultural development[J]. Siberian Studies, 37(1): 27-31.]
[21]  11 宁佳. 2012. 西伯利亚大铁路东部沿线区域土地利用变化研究[D]. 北京: 中国科学院大学: 35-43.
[22]  11 [Ning J.2012. Study of land use change in the eastern part along the trans-Siberian Railway[D]. Beijing, China: University of Chinese Academy of Sciences: 35-43.]
[23]  12 朱立君, 王卷乐, Darbalaeva D, 等. 2012. 外贝加尔土地覆盖变化驱动机制研究[J]. 测绘与空间地理信息, 35(12): 19-22.
[24]  12 [Zhu L J, Wang J L, Darbalaeva D, et al.2012. Land cover pattern and its dynamics analysis in Transbaikalia Area in Russia[J]. Geomatics & Spatial Information Technology, 35(12): 19-22.]
[25]  13 Kolchugina T P, Vinson T S.1995. 俄罗斯森林在全球碳平衡中的作用[J]. 朱志辉, 译. AMBIO, 24(5): 258-264.
[26]  13 [Kolchugina T P, Vinson T S.1995. The role of Russian forest in global carbon balance[J]. Zhu Z H, Trans. AMBIO, 24(5): 258-264.]
[27]  14 Shvidenko A, Nilsson S.1994. 对西伯利亚森林我们了解什么[J]. 张洪江, 郭健, 译. AMBIO, 23(7): 396-404.
[28]  14 [Shvidenko A, Nilsson S.1994. What we know about Siberian forest[J]. Zhang H J, Guo J, Trans. AMBIO, 23(7): 396-404.]
[29]  15 Chen J, Chen J, Liao A P, et al.2015. Global land cover mapping at 30m resolution: a POK-based operational approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 103: 7-27.
[30]  16 Cruz R V, Harasawa H, Lal M, et al.2007. Asia[R]//Parry M L, Canziani O F, Palutikoff J P, et al. Climate change 2007: impacts adaptation and vulnerability. Cambridge: Cambridge University Press: 469-506.
[31]  17 IGBP. 2005. IGBP report No. 53/IHDP report No. 19: science plan and implementation strategy[R/OL]. 2011-04-06 [2014-01-. http://www.igbp.net/download/18.1b8ae20512db692f2a680006384/1376383121392/report_53-GLP.pdf.
[32]  18 Kobak K I, Turcmnovich I Y, Kondrasiheva N Y, et al.1996. Vulnerability and adaptation of the larch forest in eastern siberia to climate change[J]. Water, Air, and Soil Pollution, 92(1-2): 119-127.
[33]  19 Lambin E F, Baulies X, Bockstael N, et al. 1995. IGBP report No. 48/IHDP report No. 10: land-use and land-cover change (LUCC): implementation strategy[R/OL]. 2015-05-11 [2013-09-. http://www.igbp.net/download/18.1b8ae20512db 692f2a680006377/1376383119247/report_48LUCC.pdf.
[34]  20 Lepokurova O E, Ivanova I S.2014. Geochemistry of iron in organogenic water of Western Siberia, Russia[J]. Procedia Earth and Planetary Science, 10: 297-302.
[35]  21 Robarts R D, Zhulidov A V, Pavlov D F.2013. The State of knowledge about wetlands and their future under aspects of global climate change: the situation in Russia[J]. Aquatic Sciences, 75(1): 27-38.
[36]  22 Schlütz F, Lehmkuhl F.2006. Climatic change in the Russian Altai, southern Siberia, based on palynological and geomorphological results, with implications for climatic teleconnections and human history since the middle Holocene[J]. Vegetation History and Archaeobotany, 16(2-3): 101-118.
[37]  23 Smith L C, Sheng Y, MacDonald G M, et al.2005. Disappearing arctic lakes[J]. Science, 308: 1429.
[38]  24 Tchebakova N M, Parfenova E I, Soja A J.2011. Climate change and climate-induced hot spots in forest shifts in central Siberia from observed data[J]. Regional Environmental Change, 11(4): 817-827.
[39]  25 Tchebakova N M, Rehfeldt G E, Parfenova E I.2010. From vegetation zones to climatypes: effects of climate warming on siberian ecosystems[M]//Osawa A, Zyryanova O A, Matsuura Y, et al. Permafrost ecosystems: Siberian larch forests. Berlin, Germany: Springer: 209, 427-446.
[40]  26 Turner B L, Janetos A C, Verburg P H, et al.2013. Land system architecture: using land systems to adapt and mitigate global environmental change[J]. Global Environmental Change, 23(2): 395-397.
[41]  27 Turner B L, Skole D, Sanderson S, et al. 1995. IGBP report No. 35/HDP report No. 7: land use land cover change science/research plan[R/OL]. 2015-05-06[2014-02-. http://www.igbp.net/download/18.1b8ae20512db692f2a680006394/1376383134962/report_59-IHOPE.pdf.2014-02-15.
[42]  28 Wagner W, Luckman A, Vietmeier J, et al.2003. Large-scale mapping of boreal forest in SIBERIA using ERS tandem coherence and JERS backscatter data[J]. Remote Sensing of Environment, 85(2): 125-144.
[43]  29 Zakharova E A, Kouraev A V, Rémy F, et al.2014. Seasonal variability of the western Siberia wetlands from satellite radar altimetry[J]. Journal of Hydrology, 512: 366-378.
[44]  30 Zhulidov A, Headley J V, Robarts R D.1997. Atlas of Russian wetlands: biogeography and metal concentrations[M]. Saskatoon, Canada: National Hydrology Research Institute, Environment: 101-102.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133