全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于邻域扩展量化法的城市边界识别

DOI: 10.18306/dlkxjz.2015.10.006, PP. 1259-1265

Keywords: 城市边界识别,城市形态,城市集群,邻域扩展量化,分形,标度,北京

Full-Text   Cite this paper   Add to My Lib

Abstract:

城市空间分析的基本条件是可靠的测度,而城市的基本测度是规模。客观定义城市边界是有效确定城市规模的技术前提。近年来国内外学者提出几种城市边界识别的方法,其中能够定量反映城市内部实体空间组织关系的多采用矢量图像。但这些矢量数据的获取十分困难,且实时性差。因此,本文借鉴前人的研究成果,基于邻域扩展量化和标度思想,提出一种应用于遥感栅格图像上的城市边界识别方法。该方法的本质是一种空间邻域融合法,通过改变像元邻域的作用范围,可以得到不同的空间集群数目;借助搜索范围与集群数目的标度关系确定一个客观的半径,据此可以利用GIS技术确定城市边界。将该方法应用于北京地区多个年份的遥感图像,发现了像元的有效邻域作用范围。此方法以栅格图像为基础,数据实时性好并且获取容易,计算过程简便,在未来的城市边界研究过程中,可望与现有的方法相互补充。

References

[1]  3 陈彦光. 2008b. 三个城市地域概念辨析[J]. 城市发展研究, 15(2): 81-84.
[2]  3 [Chen Y G.2008b. Distinguishing three spatial concepts of cities by using the idea from system science[J]. Urban Studies, 15(2): 81-84.].
[3]  4 陈彦光, 周一星. 2000. 细胞自动机与城市系统的空间复杂性模拟: 历史、现状与前景[J]. 经济地理, 20(3): 35-39.
[4]  4 [Chen Y G, Zhou Y X.2000. Cellular automata and simulation of spatial complexity of urban systems: history, present situation and future[J]. Economic Geography, 20(3): 35-39.].
[5]  5 刘继生, 陈彦光. 1999. 东北地区城市规模分布的分形特征[J]. 人文地理, 14(3): 1-6.
[6]  5 [Liu J S, Chen Y G.1999. A preliminary study of fractal features of size distribution of cities in Northeast China[J]. Human Geography, 14(3): 1-6.].
[7]  6 Batty M, Couclelis H, Eichen M.1997. Urban systems as cellular automata[J]. Environment & Planning B: Planning & Design, 24(2): 159-164.
[8]  7 Benguigui L, Czamanshi D, Marinov M, et al.2000. When and where is a city fractal[J]. Environment & Planning B: Planning & Design, 27(4): 507-519.
[9]  8 Davis K.1978. World urbanization, 1950-70[M]//Bourne L S, Simmons J W. Systems of cities: readings on structure, growth, and policy. New York, NY: Oxford University Press.
[10]  9 Frankhauser P.2008. Fractal geometry for measuring and modelling urban patterns[M]//Albeverio S, Andrey D, Giordano P, et al. The dynamics of complex urban systems: an interdisciplinary approach. Heidelberg, Germany: Physica-Verlag.
[11]  10 Jia T, Jiang B.2010. Measuring urban sprawl based on massive street nodes and the novel concept of natural cities[J]. Geodesy & Geoinformatics, arXiv:1010.0541.
[12]  11 Lowe D G.1989. Organization of smooth image curves at multiple scales[J]. International Journal of Computer Vision, 3(2): 119-130.
[13]  12 Portugali J.1999. Self-organization and the city[M]. New York, NY: Springer.
[14]  13 Rozenfeld H D, Rybski D, Andrade J S Jr, et al.2008. Laws of population growth[J]. Proceedings of the National Academy of Sciences of the United States of America, 105(48): 18702-18707.
[15]  14 Rozenfeld H D, Rybski D, Gabaix X, et al.2009. The area and population of cities: new insights from a different perspective on cities[J]. General Information, 101(5): 2205-2225.
[16]  15 Tannier C, Thomas I, Vuidel G, et al.2011. A fractal approach to identifying urban boundaries[J]. Geographical Analysis, 43(2): 211-227.
[17]  16 White R, Engelen G.1993. Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns[J]. Environment and Planning A, 25(8): 1175-1199.
[18]  17 White R, Engelen G.1994. Urban systems dynamics and cellular automata: fractal structures between order and chaos[J]. Chaos, Solitons & Fractals, 4(4): 563-583.
[19]  1 陈彦光. 2003. 中国的城市化水平有多高?城市地理研究为什么要借助分形几何学[J]. 城市规划, 27(7): 12-17.
[20]  1 [Chen Y G.2003. What is the urbanization level of China[J]. City Planning Review, 27(7): 12-17.].
[21]  2 陈彦光. 2008a. 分形城市系统: 标度·对称·空间复杂性[M]. 北京: 科学出版社.
[22]  2 [Chen Y G.2008a. Fractal urban systems: scaling·symmetry·spatial complexity[M]. Beijing, China: Science Press.].

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133