全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

海河流域降水稳定同位素的云底二次蒸发效应

DOI: 10.18306/dlkxjz.2015.08.010, PP. 1031-1038

Keywords: 降水,δ2H,和δ18O,气温,相对湿度,云底二次蒸发,海河流域

Full-Text   Cite this paper   Add to My Lib

Abstract:

云底二次蒸发导致的同位素动力分馏可显著影响观测的降水同位素组成和大气水线。本文利用海河流域7个监测站点的降水δ2H和δ18O数据,分析了云底二次蒸发对流域降水同位素的影响。结果表明流域降雨水样的大气水线为δ2H=7.19δ18O-0.74,显著不同于降雪水样的大气水线(δ2H=8.42δ18O+15.88);流域降雨,特别是小降雨(<5mm)事件,易受到云底二次蒸发的影响,导致其大气水线的斜率和截距均随着降雨量的减小而减小。流域降雨同位素的云底二次蒸发主要受气温和相对湿度控制,随着气温的升高和相对湿度的减小,云底二次蒸发加剧,导致观测的地面降雨富集重的同位素,同时伴随的同位素动力分馏导致流域降水过量氘(d)值以及大气水线的斜率和截距均减小。与平原地区相比较,流域山间盆地地区受“雨影效应”影响,气候相对干燥,其降雨同位素受更强的云底二次蒸发影响。观测期间,流域小的降雨事件占总降水事件的42%,故云底二次蒸发对流域降水同位素具有重要的影响。

References

[1]  1 刘春蓁, 刘志雨, 谢正辉. 2004. 近50年海河流域径流的变化趋势研究[J]. 应用气象学报, 15(4):385-393. [Liu C Z, Liu Z Y, Xie Z H. 2004. Study of trends in runoff for the Haihe River Basin in recent 50 years[J]. Journal of Applied Meteorological Science, 15(4): 385-393. ]
[2]  2 刘相超, 宋献方, 夏军, 等. 2005. 东台沟实验流域降水氧同位素特征与水汽来源[J]. 地理研究, 24(2): 196-205. [Liu X C, Song X F, Xia J, et al.2005. A study on oxygen isotope in precipitation of Dongtaigou Basin in Chao and Bai River Basin[J]. Geographical Research, 24(2): 196-205. ]
[3]  3 孟玉川, 刘国东. 2010. 长江流域降水稳定同位素的云下二次蒸发效应[J]. 水科学进展, 21(3): 327-334. [Meng Y C, Liu G D. 2010. Effect of below-cloud secondary evaporation on the stable isotopes in precipitation over the Yangtze River basin[J]. Advances in Water Science, 21(3): 327-334. ]
[4]  4 庞朔光, 赵诗坤, 文蓉, 等. 2015. 海河流域大气降水中稳定同位素的时空变化[J]. 科学通报, 60(13): 1218-1226. [Pang S G, Zhao S K, Wen R, et al.2015. Spatial and temporal variation of stable isotopes in precipitation in the Haihe River basin[J]. Chinese Science Bulletin, 60(13): 1218-1226. ]
[5]  5 王中根, 朱新军, 夏军, 等. 2008. 海河流域分布式SWAT模型的构建[J]. 地理科学进展, 27(4): 1-6. [Wang Z G, Zhu X J, Xia J, et al.2008. Study on distributed hydrological model in Hai River Basin[J]. Progress in Geography, 27(4): 1-6. ]
[6]  6 卫克勤, 林瑞芬, 王志祥. 1982. 北京地区降水中的氘、氧-18、氚含量[J]. 中国科学: 化学, 12(8): 754-757. [Wei K Q, Lin R F, Wang Z X. 1982. Beijing diqu jiangshui zhong de dao, yang-18, chuan hanliang[J]. Science China: Chemistry, 12(8): 754-757. ]
[7]  7 夏军. 2002. 华北地区水循环与水资源安全: 问题与挑战[J]. 地理科学进展, 21(6): 517-526. [Xia J. 2002. A perspective on hydrological base of water security problem and its application study in North China[J]. Progress in Geography, 21(6): 517-526. ]
[8]  8 Araguás-Araguás L, Froehlich K, Rozanski K. 1998. Stable isotope composition of precipitation over southeast Asia[J]. Journal of Geophysical Research, 103(D22): 28721-28742.
[9]  9 Chu J T, Xia J, Xu C Y, et al.2010. Spatial and temporal variability of daily precipitation in Haihe River basin, 1958-2007[J]. Journal of Geographical Sciences, 20(2): 248-260.
[10]  10 Clark I D, Fritz P, Michel F A, et al.1982. Isotope hydrogeology and geothermometry of the Mount Meager geothermal area[J]. Canadian Journal of Earth Sciences, 19(7): 1454-1473.
[11]  11 Craig H. 1961. Isotopic variations in meteoric waters[J]. Science, 133: 1702-1703.
[12]  12 Dansgaard W. 1964. Stable isotopes in precipitation[J]. Tellus, 16(4): 436-468.
[13]  13 Field R D, Jones D B A, Brown D P. 2010. Effects of postcondensation exchange on the isotopic composition of water in the atmosphere[J]. Journal of Geophysical Research, 115(D24), doi: doi: 10.1029/2010JD014334
[14]  14 Friedman I, Machta L, Soller R. 1962. Water-vapor exchange between a water droplet and its environment[J]. Journal of Geophysical Research, 67(7): 2761-2766.
[15]  15 Froehlich K, Kralik M, Papesch W, et al.2008. Deuterium excess in precipitation of Alpine regions-moisture recycling[J]. Isotopes in Environmental and Health Studies, 44(1): 61-70.
[16]  16 Gat J R. 1996. Oxygen and hydrogen isotopes in the hydrologic cycle[J]. Annual Review of Earth and Planetary Sciences, 24(1): 225-262.
[17]  17 Hoffmann G, Werner M, Heimann M. 1998. Water isotope module of the ECHAM atmospheric general circulation model: a study on timescales from days to several years[J]. Journal of Geophysical Research, 103(D14): 16871-16896.
[18]  18 Jouzel J, Alley R B, Cuffey K M, et al.1997. Validity of the temperature reconstruction from water isotopes in ice cores[J]. Journal of Geophysical Research, 102(C12): 26471-26487.
[19]  19 Jouzel J, Hoffmann G, Koster R D, et al.2000. Water isotopes in precipitation: data/model comparison for present-day and past climates[J]. Quaternary Science Reviews, 19(1-5): 363-379.
[20]  20 Jouzel J, Merlivat L. 1984. Deuterium and oxygen 18 in precipitation: modeling of the isotopic effects during snow formation[J]. Journal of Geophysical Research, 89(D7): 11749-11757.
[21]  21 Kong Y L, Pang Z H, Froehlich K. 2013. Quantifying recycled moisture fraction in precipitation of an arid region using deuterium excess[J]. Tellus B, 65: 19251.
[22]  22 Lee J E, Fung I. 2008. "Amount effect" of water isotopes and quantitative analysis of post-condensation processes[J]. Hydrological Processes, 22(1): 1-8.
[23]  23 Lee J E, Risi C, Fung I, et al.2012. Asian monsoon hydrometeorology from TES and SCIAMACHY water vapor isotope measurements and LMDZ simulations: implications for speleothem climate record interpretation[J]. Journal of Geophysical Research, 117(D15), doi: doi: 10.1029/2011JD017133
[24]  24 Liu J R, Song X F, Fu G B, et al.2011. Precipitation isotope characteristics and climatic controls at a continental and an island site in Northeast Asia[J]. Climate Research, 49(1): 29-44.
[25]  25 Liu Z F, Tian L D, Yao T D, et al.2008. Seasonal deuterium excess in Nagqu precipitation: influence of moisture transport and recycling in the middle of Tibetan Plateau[J]. Environmental Geology, 55(7): 1501-1506.
[26]  26 Liu Z F, Yoshimura K, Kennedy C D, et al.2014. Water vapor δ D dynamics over China derived from SCIAMACHY satellite measurements[J]. Science China: Earth Sciences, 57(4): 813-823.
[27]  27 Ma Q, Zhang M J, Wang S J, et al.2014. An investigation of moisture sources and secondary evaporation in Lanzhou, Northwest China[J]. Environmental Earth Sciences, 71(8): 3375-3385.
[28]  28 Merlivat L, Jouzel J. 1979. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation[J]. Journal of Geophysical Research: Oceans (1978-2012), 84(C8): 5029-5033.
[29]  29 Peng H D, Mayer B, Harris S, et al.2004. A 10-yr record of stable isotope ratios of hydrogen and oxygen in precipitation at Calgary, Alberta, Canada[J]. Tellus B, 56(2): 147-159.
[30]  30 Peng H D, Mayer B, Harris S, et al.2007. The influence of below-cloud secondary effects on the stable isotope composition of hydrogen and oxygen in precipitation at Calgary, Alberta, Canada[J]. Tellus B, 59(4): 698-704.
[31]  31 Risi C, Bony S, Vimeux F, et al.2010. Evolution of the stable water isotopic composition of the rain sampled along Sahelian squall lines[J]. Quarterly Journal of the Royal Meteorological Society, 136(S1): 227-242.
[32]  32 Stewart M K. 1975. Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: applications to atmospheric processes and evaporation of lakes[J]. Journal of Geophysical Research, 80(9): 1133-1146.
[33]  33 Wen X F, Zhang S C, Sun X M, et al.2010. Water vapor and precipitation isotope ratios in Beijing, China[J]. Journal of Geophysical Research, 115(D1): D01103, doi: doi: 10.1029/2009JD012408
[34]  34 Yoshimura K, Oki T, Ohte N, et al.2003. A quantitative analysis of short-term 18O variability with a Rayleigh-type isotope circulation model[J]. Journal of Geophysical Research, 108(D20), doi: doi: 10.1029/2003JD003477

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133