1 蔡林霖. 2013. 随机森林的模型选择及其并行化方法[D]. 哈尔滨: 哈尔滨工业大学. [Cai L L. 2013. Model selection of random forest and its parallelization[D]. Harbin, China: Harbin Institute of Technology.]
[2]
2 段晓东, 王存睿, 刘向东. 2012. 元胞自动机理论研究及其仿真应用[M]. 北京: 科学出版社. [Duan X D, Wang C R, Liu X D. 2012. Cellular automata theory research and simulation applications[M]. Beijing, China: Science Press.]
[3]
3 方匡南, 吴见彬, 朱建平, 等. 2011. 随机森林方法研究综述[J]. 统计与信息论坛, 26(3): 32-38. [Fang K N, Wu J B, Zhu J P, et al.2011. A review of technologies on random forests[J]. Statistics & Information Forum, 26(3): 32-38.]
[4]
4 冯永玖, 刘妙龙, 童小华, 等. 2010. 基于核主成分元胞模型的城市演化重建与预测[J]. 地理学报, 65(6): 665-675. [Feng Y J, Liu M L, Tong X H, et al.2010. Kernel principal components analysis based cellular model for restructuring and predicting urban evolution[J]. Acta Geographica Sinica, 65(6): 665-675.]
[5]
5 冯永玖, 刘艳, 韩震. 2011. 不同样本方案下遗传元胞自动机的土地利用模拟及景观评价[J]. 应用生态学报, 22(4): 957-963. [Feng Y J, Liu Y, Han Z. 2011. Land use simulation and landscape assessment by using genetic algorithm based on cellular automata under different sampling schemes[J]. Chinese Journal of Applied Ecology, 22(4): 957-963.]
[6]
6 何春阳, 史培军, 陈晋, 等. 2005. 基于系统动力学模型和元胞自动机模型的土地利用情景模型研究[J]. 中国科学: 地球科学, 35(5): 464-473. [He C Y, Shi P J, Chen J, et al.2005. Developing land use scenario dynamics model by the integration of system dynamics model and cellular automata model[J]. Science in China: Earth Sciences, 48(11): 1979-1989.]
[7]
7 柯新利, 孟芬, 马才学. 2014. 基于粮食安全与经济发展区域差异的土地资源优化配置: 以武汉城市圈为例[J]. 资源科学, 36(8): 1572-1578. [Ke X L, Meng F, Ma C X. 2014. Optimizing land resource allocation based on food security and regional difference in economic development: a case study in Wuhan metropolitan[J]. Resources Science, 36(8): 1572-1578.]
[8]
8 廖江福, 唐立娜, 王翠平, 等. 2014. 城市元胞自动机扩展邻域效应的测量与校准研究[J]. 地理科学进展, 33(12): 1624-1633. [Liao J F, Tang L N, Wang C P, et al.2014. Measuring and calibrating extended neighborhood effect of urban cellular automata model based on particle swarm optimization[J]. Progress in Geography, 33(12): 1624-1633.]
[9]
9 刘小平, 黎夏, 叶嘉安, 等. 2007. 利用蚁群智能挖掘地理元胞自动机的转换规则[J]. 中国科学: 地球科学, 37(6): 824-834. [Liu X P, Li X, Yeh A G O, et al.2007. Discovery of transition rules for geographical cellular automata by using ant colony optimization[J]. Science in China : Earth Sciences, 50(10): 1578-1588.]
[10]
10 龙瀛. 2011. 面向空间规划的微观模拟: 数据、模拟与评价[D]. 北京: 清华大学. [Long Y. 2011. Urban microsimulation for spatial plan: data, modelling, and evaluation[D]. Beijing, China: Tsinghua University.]
[11]
11 王云飞, 庞勇, 舒清态. 2013. 基于随机森林算法的橡胶林地上生物量遥感反演研究: 以景洪市为例[J]. 西南林业大学学报, 33(6): 38-45. [Wang Y F, Pang Y, Shu Q T. 2013. Counter-estimation on aboveground biomass of Hevea brasiliensis plantation by remote sensing with random forest algorithm: a case study of Jinghong[J]. Journal of Southwest Forestry University, 33(6): 38-45.]
[12]
12 杨青生. 2008. 地理元胞自动机及空间动态转换规则的获取[J]. 中山大学学报: 自然科学版, 47(4): 122-127. [Yang Q S. 2008. Dynamic transition rules for geographical cellular automata[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 47(4): 122-127.]
14 张鸿辉, 尹长林, 曾永年, 等. 2008. 基于SLEUTH模型的城市增长模拟研究: 以长沙市为例[J]. 遥感技术与应用, 23(6): 618-623. [Zhang H H, Yin C L, Zeng Y N, et al.2008. Study on urban growth simulation based on SLEUTH model: Changsha City as an example[J]. Remote Sensing Technology and Application, 23(6): 618-623.]
[15]
15 张亦汉, 黎夏, 刘小平, 等. 2013. 耦合遥感观测和元胞自动机的城市扩张模拟[J]. 遥感学报, 17(4): 872-886. [Zhang Y H, Li X, Liu X P, et al.2013. Urban expansion simulation by coupling remote sensing observations and cellular automata[J]. Journal of Remote Sensing, 17(4): 872-886.]
[16]
16 Breiman L. 2001 a. Random forests[J]. Machine Learning, 45(1): 5-32.
[17]
17 Breiman L. 2001 b. Statistical modeling: the two cultures[J]. Statistical Science, 16(3): 199-231.
[18]
18 Breiman L, Friedman J H, Stone C J, et al.1984. Classification and regression trees[M]. Boca Raton, FL: CRC press.
[19]
19 Chen Y M, Li X, Wang S J, et al.2013. Simulating urban form and energy consumption in the Pearl River Delta under different development strategies[J]. Annals of the Association of American Geographers, 103(6): 1567-1585.
[20]
20 Genuer R, Poggi J -M, Tuleau-Malot C. 2010. Variable selection using random forests[J]. Pattern Recognition Letters, 31(14): 2225-2236.
[21]
21 Hastie T, Tibshirani R, Friedman J H. 2008. The elements of statistical learning: data mining, inference, and prediction (2nd ed.)[M]. New York, NY: Springer.
[22]
22 Kandaswamy K K, Chou K C, Martinetz T, et al.2011. AFP-Pred: a random forest approach for predicting antifreeze proteins from sequence-derived properties[J]. Journal of Theoretical Biology, 270(1): 56-62.
[23]
23 Li X, Yeh A G O. 2001. Calibration of cellular automata by using neural networks for the simulation of complex urban systems[J]. Environment and Planning A, 33(8): 1445-1462.
[24]
24 Li X, Yeh A G O. 2002. Neural-network-based cellular automata for simulating multiple land use changes using GIS[J]. International Journal of Geographical Information Science, 16(4): 323-343.
[25]
25 Liu X P, Li X, Liu L, et al.2008. A bottom-up approach to discover transition rules of cellular automata using ant intelligence[J]. International Journal of Geographical Information Science, 22(11-12): 1247-1269.
[26]
26 Peters J, De Baets B, Verhoest N E C, et al.2007. Random forests as a tool for ecohydrological distribution modelling[J]. Ecological Modelling, 207(2-4): 304-318.
[27]
27 Rodriguez-Galiano V F, Ghimire B, Rogan J, et al.2012. An assessment of the effectiveness of a random forest classifier for land-cover classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 67: 93-104.
[28]
28 Wu F L. 2002. Calibration of stochastic cellular automata: the application to rural-urban land conversions[J]. International Journal of Geographical Information Science, 16(8): 795-818.