全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

降雨信息空间插值的不确定性分析

DOI: 10.11820/dlkxjz.2004.02.005, PP. 34-42

Keywords: 不确定性,降雨信息,空间插值

Full-Text   Cite this paper   Add to My Lib

Abstract:

文章以潮白河流域为样区,根据58个雨量站1990年的降雨观测数据,采用反距离权重法、克立格法、样条函数法、趋势面法等插值方法,分析了站点数量变化、时间尺度变化、栅格像元的尺度变化、插值方法的差异对降雨数据空间插值结果的影响,剖析降雨插值中的不确定性。结果表明(1)插值站点数量越大,区域降雨插值的不确定性越小;(2)像元尺度在50m~1000m间变化对降雨插值的不确定性只有微弱的影响;(3)对应于时间尺度由年到月到日的变化,降雨插值的不确定性随时间尺度的减小而显著增大;(4)不同插值方法影响到降雨空间插值的不确定性水平。为了减少降雨信息空间插值的不确定性,根本途径是要引入第三方相关变量,并将其整合到现有的插值算法中。高相关性变量的选取及其与插值模型的整合方式将成为降雨插值研究的主导方向。

References

[1]  Running S.W.,R.R.Nemaini,R.D.Hungerford, Extrapolation of synoptic meteorological data in mountainous terrain and its use simulating forest evapotranspiration rate and photosynthese, Canadian Journal of Forest Research, 1987, 17,472~483.
[2]  Husar R.B., Falke S.R., Uncertainty in the spatial interpolation of PM10 monitoring data in Southern California, http://capita.wustl.edu/capita/capitareports/cainterp/cainterp.html.
[3]  Waters N.M. Unit40-spatial interpolation1,   http://www.gisca.adelaide.edu.au/kea/gisrs /ncgia/u40.html, 1999.
[4]  Band et. al., Forest ecosystem processes at the watershed scale: basis for distributed simulation, Ecological Modelling, 1991, 56, 171~196.
[5]  周国法,徐汝梅,生物地理统计学——生物种群时空分析的方法及其应用. 科学出版社,1998,42~65。
[6]  Lam,N., Spatial Interpolation Methods: A Review, The American Cartographer 1983,10(2):129~149.
[7]  Price D.T.,et.al., A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data, Agricultural and Forest meteorology, 2000, 10(1):81~94.
[8]  Collins F.C. A comparison of spatial interpolation techniques in temperature estimation, http://www.ncgia.ucsb.edu/conf/santa fe cd-rom/sf papers/collins fred/collins.html,1999.
[9]  Waters N.M. Unit41-spatial interpolation2, http://www.gisca.adelaide.edu.au/kea/gisrs /ncgia/u41.html, 1999.
[10]  Dubrule, Oliver, Two methods with different objectives: Splines and Kriging, Mathematical Geology, 1983,15(2):245~257.
[11]  Puente, Carlos E., and Rafael L. Bras, Disjunctive Kriging, universal kriging, or no kriging: Small sample results with simulated fields, Mathematical Geology, 1986, 18(3):287~305.
[12]  Phillips, E.L., J.Dolph, and D.Marks, “A comparison of geostatistical procedures for spatial analysis of precipitation in mountainous terrain”, Agricultural and Forest Meterology, 1992, 58,119~141.
[13]  Legates,D.R. and C.J.Willmont, Mean Seasonal and Spatial Variability in Global Surface Air Temperature, Theor. Appl. Climatol., 1990, 41, 11~21.
[14]  Shepard,D.L., A two dimensional interpolation function for irregularly spaced data. Proc. 23rd Nat. Conf., Assoc. Computing Machinery, ACM, Washington, 1968, 517~524.
[15]  Robeson,S.M., Spatial Interpolation, Network Bias, and Terrestrial Air Temperature Variability, Publications in Climatology, C.W. Thornthwaite Associates Laboratory of Climatology, 1993,51~52.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133