Houghton R A, Hackler J L, Lawrence K T. The US carbon budget: contributions from land-use change. Science, 1999, 285: 574~578.
[2]
Zhou Guangsheng, Wang Yuhui, Jiang Yanling, Yang Zhengyu. Estimating biomass and net primary production from forest inventory data: a case study of China's Larix forests. Forest Ecology and Management, 2002, 169: 149~157.
Keeling R F, Piper S C & Heimann M. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature, 1996, 381: 218~221.
[5]
Myneni R B, Keeling C D, Tucker C J, Asrar C and Nemani R R Increased plant growth in the northern high latitudes from 1988~1991, Nature, 1997, 386: 698~702.
[6]
Cramer W, Kicklighter D W, Bondeau A, Moore B, Churkina C, Nemry B, Ruimy A, Schloss A L. Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Global Change Biol., 1999, 5: 1~15.
Hicke J A, Asner G P, Randerson J, Los S, Birdsey R, Jenkins J C, Tucker C J, Field C B. Trends in north American net primary productivity derived from satellite observations, 1982~1999. Global Biogeochemical Cycles, 2002, 16(2): 1~14.
[20]
Prince S D, Goward S N. Global primary production: a remote sensing approach. Journal of biogeography, 1995, 22: 815~835.
[21]
Goetz S J, Prince S D, Small J, Gleason A R, Thawley M M. Interannual variability of global terrestrial primary production: reduction of a model driven with satellite observations. J. Geophys. Res., 2000, 105: 20077~20091.
[22]
Cao Mingkui, Prince S D, Small J, Goetz S J. Remotely Sensed Interannual Variations and Trends in Terrestrial Net Primary Productivity 1981~2000. Ecosystems, 2004, 7: 233~242.
[23]
Goetz S J, Prince S D, Goward S N, Thawley MM, Small J. Satellite remote sensing of primary production: an improved production efficiency modeling approach. Ecol. Model., 1999, 122(3): 239~255.
[24]
Scholes R J, Noble I R. Storing Carbon on Land. Science, 2001, 294: 1012~1013.
[25]
IPCC.Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of IPCC. 2001.
[26]
Smith et al. The global terrestrial carbon cycle. Water, Air, and Soil Pollution, 1993, 70:19~37.
[27]
IGBP.IGBP Modelling and Data Activities 1994~1998, Global Change Report No.30, Stockholm: International Geosphere-Biosphere Programme. 1994.
[28]
Lieth H, Whittaker R H. Primary productivity of the Biosphere. New York: Springer Verlag. 1975.
[29]
方精云. 全球生态学. 北京: 高等教育出版社. 2000.
[30]
Melillo J M, McGuire A D, Kicklighter D W, Moore B, Vorosmarty C J, Schloss A L. Global climate change and terrestrial net primary production. Nature, 1993, 363: 234~240.
[31]
Field C B, Behrenfeld M J, Randerson J T, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 1998, 281: 237~240.
Ciais P, Tans P P, Trolier M, White J W C and Francey R J. A large norther hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science, 1995, 269: 1098~1102.
[34]
Field C B, Randerson J T, Malmstrom CM. Global net primary production: combing ecology and remote sensing. Remote Sens. Environ., 1995, 51: 74~88.
Myneni R, Williams D. On the relationship between FAPAR and NDVI. Remote Sensing of Environment, 1994, 49 : 200~211.
[42]
Prince S D, Goetz S J, Czajkowski K, Dubayah R, Goward S N. Inference of surface and air temperature, atmospheric precipitable water and vapor pressure deficit using AVHRR satellite observations: Validation of algorithms. J. Hydrol., 1998, 212/213: 231~250.
[43]
Czajkowski K P, Mulhern T, Goward S N, Cihlar J, Dubayah R O, Prince S D. Biospheric environmental monitoring at BOREAS with AVHRR observations. J. Geophys. Res., 1997, 102: 29651~29662.