全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

河流碳循环对全球变化的响应与反馈

DOI: 10.11820/dlkxjz.2005.05.006, PP. 50-60

Keywords: 河流碳循环,全球变化,人类活动,通量,有机碳

Full-Text   Cite this paper   Add to My Lib

Abstract:

河流连接陆地生态系统和海洋两大活动碳库,构成全球碳循环的一个关键环节。河流碳的输出及循环过程与近岸水域环境、海洋碳库变动及全球气候系统紧密相关。有机碳在全球碳循环系统中处于核心地位,了解河流有机碳通量及性质变化是目前河流碳循环研究的重要内容之一。流域面积的大小及气候和环境性质的差异对河流碳的输移及循环过程影响显著。目前,亚洲季风流域尤其是众多的小流域缺乏系统的有关悬移质生源要素的信息。陆地侵蚀-沉积过程控制着河流碳的主要来源和归宿。当前,人类活动主宰着陆地的侵蚀-沉积状况,这在很大程度上表现为加速了陆地生态系统碳库的扰动与再沉积,并加强了河流向海洋的碳输送。

References

[1]  Meybeck M. Carbon, nitrogen and phosphorus transport by world rivers. Am J Sci, 1982, 282(4): 401~450.
[2]  Sarmiento J L, Sundquist F T. Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature, 1992, 356: 389~393.
[3]  Sharp J H. Size classes of organic carbon in seawater. Limnol Oceanorg, 1973, 18 (3): 441~447.
[4]  Schlesinger W H, Melack J M. Transport of organic carbon in the world’s rivers. Tellus, 1981, 33: 172~187.
[5]  Meybeck M. Riverine transport of atmospheric carbon: sources, global typology and budget. Water, Air, and Soil Pollution, 1993, 70: 443~463.
[6]  Suchet P A, Probst J L. A global model for present - day atmospheric/ soil CO2 consumption by chemical erosion of continental rocks (GEM - CO2). Tellus, 1995, 47B (1/ 2): 273~280.
[7]  Benner R, Opsahl S, Chin-Leo G. Bacterial carbon metabolism in the Amazon River system. Limnology and Oceanography, 1995, 40: 1262~1270.
[8]  Carol Kendall, Steven R, Valerie J. Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States. Hydrological Process, 2001, 15: 1301~1346.
[9]  Tao Zhen, Gao Quanzhou, Xie Meiqi,et al. Effect of hydrological processes on the chemical composition of riverine suspended sediment: A case study from the Zhujiang River, China. Oceanologia et Limnologia Sinica, 2002, 33(6): 569~576.
[10]  Gupta L P, Subramanian V and Ittekkot V. Biogeochemistry of particulate organic matter transported by the Godavari River, India. Biogeochemistry, 1997, 38:103~128.
[11]  Kao S J and Liu K K. Particulate organic carbon export from a subtropical mountainous river (Lanyang Hsi) in Taiwan. Limnology and Oceanography, 1996, 41: 1749~1757.
[12]  Leithold E L, Blair N E. Watershed control on the organic loading of marine sedimentary particles. Geochim. Cosmochim. Acta, 2001, 65: 2059~2068.
[13]  Masiello C A, Druffel E R M. Carbon isotope geochemistry of the Santa Clara River. Global Biogeochemical Cycles, 2001, 15: 407~416.
[14]  Hedges J I. Global biogeochemical cycles: Progress and problems. Mar. Chem, 1992, 39: 67~93.
[15]  Tissot B P, Welte D H. Petroleum Formation and Occurrence. New York: Springer-Verlag, 1978. 538.
[16]  Kramer J R. Old sediment carbon in global budgets. In: Rounsevell M D, Loveland A P J, eds. NATO ASI Seri: Soil Responses to Climate Change. New York: Spring-Verlag 123, 1994. 169~183.
[17]  王效科, 庄亚辉, 冯宗炜. 森林火灾释放的含碳温室气体量的估计. 环境科学进展, 1998, 6(4): 1~15.
[18]  Caroline A, Masiello, Ellen R M. Carbon isotope geochemistry of the Santa Clara River. Global Biogeochemical Cycle, 2001, 15(2): 407~416.
[19]  Donahue D, Linick T, Tall J. Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements. Radiocarbon, 1990, 32: 135~142.
[20]  Mounier S, Braucher R, Bena?m J Y. Differentiation of organic matter's properties of the Rio Negro basin by crossflow ultra-filtration and UV-spectrofluorescence. Water Research, 1999, 33: 2363~2373.
[21]  Lyons W B, Nezat C A, Carey A E. Organic carbon fluxes to the ocean from high-standing islands. Geology, 2002, 30: 443~446.
[22]  Sommerfield C K, Nittrouer C A. Modern accumulation rates and a sediment budget for the Eel shelf: A flood-dominated depositional environment. Mar. Geol, 1999, 154: 227~241.
[23]  高全洲, 沈承德. 河流碳通量与陆地侵蚀研究. 地球科学进展, 1998, 13(4): 369~375.
[24]  Meybeck M, Cauwet G, Dessery S. Nutrients (Organic C, P, N, Si) in the Eutrophic River Loire and its Estuary. Estuar. coast. shelf. Sci, 1988, 27:595~624.
[25]  Ludwig W, Amiotte-Suchet P, Munhoven G. Atmospheric CO2 consumption by continental erosion: present-day controls and implications for the last glacial maximum. Global Planet Change, 1998, 16/17: 107~120.
[26]  Meade R H, Stevens H H. Strategies and equipment for sampling suspended sediment and associated toxic chemicals in large rivers--with emphasis on the Mississippi River. Sci. Tot. Environ, 1990, 97/98: 125~135.
[27]  Tans P P, Fung I Y, Takahashi T. Observational constraints on the global atmosphericCO2 budget. Science, 1990, 247: 1431~1438.
[28]  Francey R T, Tans P P, Allison C E. Changes in oceanic and terrestrial carbon uptake since 1982. Nature, 1995, 373: 326~330.
[29]  Ciais P, Tans P P, and White J W C, et al. Partitioning of ocean and land up take of CO2 as inferred by δ 13C measurements from the NOAA Climate Monitoring and Diagnostics laboratory global air sampling network. J. Geophys. Res, 1995, 100: 5051~5070.
[30]  Matthews E. Global vegetation and land use: New high-resolution data bases for climate studies. J Clim. Appl. Meteorol, 1983, 22: 474~487.
[31]  Gibbs R J. The geochemistry of the Amazon River system: Part Ι: The factors that control
[32]  Rostad C E, Leenheer J A, Daniel S R. Organic carbon and nitrogen content associated with colloids and suspended particles from the Mississippi River and some of its tributaries. Environmental Science and Technology, 1997, 31: 3218~3225.
[33]  Ludwig W, Probst J L, Kempe S. Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochemistry Cycle, 1996, 10 (1): 23~41.
[34]  Cauwet G. Abiotic particle matter. In: Duursma E K, Dawson R, eds. Marine Organic Chemistry (海洋有机化学). Ji Minghou (纪明侯), Qian Zuoguo (钱佐国) et al (translate). Beijing: Ocean Press, 1992. 89~114.
[35]  Wollast R, Mackenzie F T. The global cycle of silica. In: Aston S, ed. Silicon Geochemistry and Biogeochemistry. London: Academic Press, 1983. 39~76.
[36]  Meybeck M, Jussieu P. C, N, P and S in rivers: from sources to global input. In: Wollast R et al, eds. Interactions of C, N, P, and S biogeochemical cycle and global change. New York: Springer, 1993. 163~194.
[37]  王江涛,于志刚,张经. 鸭绿江口溶解有机碳的研究. 青岛海洋大学学报, 1998, 28(3): 471~475.
[38]  Cauwet G, Mackenzie F T. Carbon inputs and distribution in estuaries of turbid rivers: the Yang Tze and Yellow Rivers (China) . Marine Chemistry, 1993, 43: 235~246.
[39]  陶 澍, 梁 涛, 徐尚平,等. 伊春河河水溶解态有机碳含量和输出通量的时空变化. 地理学报, 1997, 52(3): 254~261.
[40]  Richey J E, Hedge J I, Devol A H, et al. Biogeochemistry of carbon in the Amazon River. Limnology and Oceanography, 1990, 32 (5): 352~371.
[41]  Veyssy E, Etcheber H, Lin R G, et al. Seasonal variation and origin of Particulate Organic Carbon in the lower Garonne River at La Reole (southwestern France) . Hydrobiologia, 1999, 391: 113~126.
[42]  Ittekkot V, Safiullah S, Mycke B. Seasonal variability and geochemical significance of organic matter in the River Ganges, Bangladesh. Nature, 1985, 317: 800~802.
[43]  Spitzy A. Ittekkot V. Dissolved and Particulate Organic Matter in Rivers. In: Mantoura R F C, Martin J M, Wollast R, eds. Ocean Margin Processes in Global Change. Hamburg: John Wiley & Sons, 1991. 127~153.
[44]  Telang S A, Pocklington R, Naidu A S. Carbon and mineral transport in major North American, Russian Arctic, and Siberian rivers: the St Lawrence, the Mackenzie, the Yukon, the Arctic Basin rivers in the Soviet Union and the Yenisei. In: Degens ET, Kempe S, Richey J E, eds. Biogeochemistry of major world rivers. New York: John Wiley&Sons, 1991,75~104.
[45]  McCallister S L, Bauer J E, Cherrier J E, et al. Assessing sources and ages of organic matter supporting river and estuarine bacterial production: A multiple-isotope(?14C,δ13C,δ15N)approach . Limnology and Oceanography, 2004, 49(5):1687~1702.
[46]  Delwiche C C, Likens G E. Biological response to fossil fuel combustion products. In: Stumm W, ed. Global Chemical Cycles and Their Alterations by Man. Berlin: Dahlem Konferenzen, 1977, 73~68.
[47]  Berner R A, Canfield D E. New model for atmospheric oxygen over Phanerozoic time. Am. J. Sci, 1989, 289: 333~361.
[48]  Blair N E, Leithold E, Ford S T, et al. The persistence of memory: The fate of ancient sedimentary organic carbon in a modern sedimentary system. Geochimica et Cosmochimica Acta, 2003, 67(1): 66~73.
[49]  Milliman J D, Syvitski J P M. Geomorphic/ tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. Journal of Geology, 1992, 100: 525~544.
[50]  高全洲, 陶 贞. 河流有机碳的输出通量及性质研究进展. 应用生态学报, 2003,14(6): 1000~1002.
[51]  Meybeck M, V?觟r?觟smarty C. Global transfer of carbon by rivers. Global Change Newsletter, 1999, 37: 18~19.
[52]  Thurman E M, ed. Organic Geochemistry of Natural Waters. Martinus Nijhoff, Dortrecht, 1985. 497.
[53]  Mulholland P J. Deposition of riverborne organic carbon in floodplain wetlands and deltas. In: Flux of Organic Carbon by Rivers to the Oceans, Report of a Workshop, CONF-8009140, and U.S. Dep. Of Energy, Washington, D.C:1980, 142~172.
[54]  Mulholland P J, Elwood J W. The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle. Tellas, 1982, 34: 490~499.
[55]  Kempe S. Sinks of the anthropologically enhanced carbon cycle in surface fresh waters. J.Geophys.Res, 1984, 89(D3): 4657~4676.
[56]  Schlesinger W H. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature, 1990, 348: 232~234.
[57]  Stallard R F. Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial. Global Biogeochemical Cycles, 1998, 12(2): 231~257.
[58]  Hooke R L. On the efficacy of humans as geomorphic agents. GSA Today, 1994, 4(9): 218~225.
[59]  [the salinity and the composition and concentration of the suspended solids. Geol. Soc.America Bull, 1976, 78: 1203~1232.
[60]  Meade R H, Dunne T, Richey J E. Storage and remobilization of suspended sediment in the lower Amazon River of Brazil. Science, 1985, 228: 488~490.
[61]  Stallard R E. Cross-channel mixing and its effect on sedimentation in the Orinoco River. Water Resour. Res. 1987, 23: 1977~1986.
[62]  Admiraal, Breagen, Jacobs. Fixation of dissolved silicate and sedimentation of biogenic silicate in the lower river Rhine during diatom blooms. Biogeochemistry, 1990, 9: 175~195.
[63]  Turner R F, Rabalais N N. Coastal entrophication near the Mississippi River delta. Nature, 1994, 368: 619~621.
[64]  Richey J E, Melack J M, Aufdenkampe A K, et al. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature, 2002, 416: 617~620.
[65]  Cole J J, Caraco N F. Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Mar Freshwater Res, 2002, 52: 101~110.
[66]  李 凡. 海岸带陆海相互作用(LOICZ)研究及我们的策略. 地球科学进展, 1996, 11(1): 19~23.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133