Meybeck M. Carbon, nitrogen and phosphorus transport by world rivers. Am J Sci, 1982, 282(4): 401~450.
[2]
Sarmiento J L, Sundquist F T. Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature, 1992, 356: 389~393.
[3]
Sharp J H. Size classes of organic carbon in seawater. Limnol Oceanorg, 1973, 18 (3): 441~447.
[4]
Schlesinger W H, Melack J M. Transport of organic carbon in the world’s rivers. Tellus, 1981, 33: 172~187.
[5]
Meybeck M. Riverine transport of atmospheric carbon: sources, global typology and budget. Water, Air, and Soil Pollution, 1993, 70: 443~463.
[6]
Suchet P A, Probst J L. A global model for present - day atmospheric/ soil CO2 consumption by chemical erosion of continental rocks (GEM - CO2). Tellus, 1995, 47B (1/ 2): 273~280.
[7]
Benner R, Opsahl S, Chin-Leo G. Bacterial carbon metabolism in the Amazon River system. Limnology and Oceanography, 1995, 40: 1262~1270.
[8]
Carol Kendall, Steven R, Valerie J. Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States. Hydrological Process, 2001, 15: 1301~1346.
[9]
Tao Zhen, Gao Quanzhou, Xie Meiqi,et al. Effect of hydrological processes on the chemical composition of riverine suspended sediment: A case study from the Zhujiang River, China. Oceanologia et Limnologia Sinica, 2002, 33(6): 569~576.
[10]
Gupta L P, Subramanian V and Ittekkot V. Biogeochemistry of particulate organic matter transported by the Godavari River, India. Biogeochemistry, 1997, 38:103~128.
[11]
Kao S J and Liu K K. Particulate organic carbon export from a subtropical mountainous river (Lanyang Hsi) in Taiwan. Limnology and Oceanography, 1996, 41: 1749~1757.
[12]
Leithold E L, Blair N E. Watershed control on the organic loading of marine sedimentary particles. Geochim. Cosmochim. Acta, 2001, 65: 2059~2068.
[13]
Masiello C A, Druffel E R M. Carbon isotope geochemistry of the Santa Clara River. Global Biogeochemical Cycles, 2001, 15: 407~416.
[14]
Hedges J I. Global biogeochemical cycles: Progress and problems. Mar. Chem, 1992, 39: 67~93.
[15]
Tissot B P, Welte D H. Petroleum Formation and Occurrence. New York: Springer-Verlag, 1978. 538.
[16]
Kramer J R. Old sediment carbon in global budgets. In: Rounsevell M D, Loveland A P J, eds. NATO ASI Seri: Soil Responses to Climate Change. New York: Spring-Verlag 123, 1994. 169~183.
Caroline A, Masiello, Ellen R M. Carbon isotope geochemistry of the Santa Clara River. Global Biogeochemical Cycle, 2001, 15(2): 407~416.
[19]
Donahue D, Linick T, Tall J. Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements. Radiocarbon, 1990, 32: 135~142.
[20]
Mounier S, Braucher R, Bena?m J Y. Differentiation of organic matter's properties of the Rio Negro basin by crossflow ultra-filtration and UV-spectrofluorescence. Water Research, 1999, 33: 2363~2373.
[21]
Lyons W B, Nezat C A, Carey A E. Organic carbon fluxes to the ocean from high-standing islands. Geology, 2002, 30: 443~446.
[22]
Sommerfield C K, Nittrouer C A. Modern accumulation rates and a sediment budget for the Eel shelf: A flood-dominated depositional environment. Mar. Geol, 1999, 154: 227~241.
Meybeck M, Cauwet G, Dessery S. Nutrients (Organic C, P, N, Si) in the Eutrophic River Loire and its Estuary. Estuar. coast. shelf. Sci, 1988, 27:595~624.
[25]
Ludwig W, Amiotte-Suchet P, Munhoven G. Atmospheric CO2 consumption by continental erosion: present-day controls and implications for the last glacial maximum. Global Planet Change, 1998, 16/17: 107~120.
[26]
Meade R H, Stevens H H. Strategies and equipment for sampling suspended sediment and associated toxic chemicals in large rivers--with emphasis on the Mississippi River. Sci. Tot. Environ, 1990, 97/98: 125~135.
[27]
Tans P P, Fung I Y, Takahashi T. Observational constraints on the global atmosphericCO2 budget. Science, 1990, 247: 1431~1438.
[28]
Francey R T, Tans P P, Allison C E. Changes in oceanic and terrestrial carbon uptake since 1982. Nature, 1995, 373: 326~330.
[29]
Ciais P, Tans P P, and White J W C, et al. Partitioning of ocean and land up take of CO2 as inferred by δ 13C measurements from the NOAA Climate Monitoring and Diagnostics laboratory global air sampling network. J. Geophys. Res, 1995, 100: 5051~5070.
[30]
Matthews E. Global vegetation and land use: New high-resolution data bases for climate studies. J Clim. Appl. Meteorol, 1983, 22: 474~487.
[31]
Gibbs R J. The geochemistry of the Amazon River system: Part Ι: The factors that control
[32]
Rostad C E, Leenheer J A, Daniel S R. Organic carbon and nitrogen content associated with colloids and suspended particles from the Mississippi River and some of its tributaries. Environmental Science and Technology, 1997, 31: 3218~3225.
[33]
Ludwig W, Probst J L, Kempe S. Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochemistry Cycle, 1996, 10 (1): 23~41.
[34]
Cauwet G. Abiotic particle matter. In: Duursma E K, Dawson R, eds. Marine Organic Chemistry (海洋有机化学). Ji Minghou (纪明侯), Qian Zuoguo (钱佐国) et al (translate). Beijing: Ocean Press, 1992. 89~114.
[35]
Wollast R, Mackenzie F T. The global cycle of silica. In: Aston S, ed. Silicon Geochemistry and Biogeochemistry. London: Academic Press, 1983. 39~76.
[36]
Meybeck M, Jussieu P. C, N, P and S in rivers: from sources to global input. In: Wollast R et al, eds. Interactions of C, N, P, and S biogeochemical cycle and global change. New York: Springer, 1993. 163~194.
Cauwet G, Mackenzie F T. Carbon inputs and distribution in estuaries of turbid rivers: the Yang Tze and Yellow Rivers (China) . Marine Chemistry, 1993, 43: 235~246.
Richey J E, Hedge J I, Devol A H, et al. Biogeochemistry of carbon in the Amazon River. Limnology and Oceanography, 1990, 32 (5): 352~371.
[41]
Veyssy E, Etcheber H, Lin R G, et al. Seasonal variation and origin of Particulate Organic Carbon in the lower Garonne River at La Reole (southwestern France) . Hydrobiologia, 1999, 391: 113~126.
[42]
Ittekkot V, Safiullah S, Mycke B. Seasonal variability and geochemical significance of organic matter in the River Ganges, Bangladesh. Nature, 1985, 317: 800~802.
[43]
Spitzy A. Ittekkot V. Dissolved and Particulate Organic Matter in Rivers. In: Mantoura R F C, Martin J M, Wollast R, eds. Ocean Margin Processes in Global Change. Hamburg: John Wiley & Sons, 1991. 127~153.
[44]
Telang S A, Pocklington R, Naidu A S. Carbon and mineral transport in major North American, Russian Arctic, and Siberian rivers: the St Lawrence, the Mackenzie, the Yukon, the Arctic Basin rivers in the Soviet Union and the Yenisei. In: Degens ET, Kempe S, Richey J E, eds. Biogeochemistry of major world rivers. New York: John Wiley&Sons, 1991,75~104.
[45]
McCallister S L, Bauer J E, Cherrier J E, et al. Assessing sources and ages of organic matter supporting river and estuarine bacterial production: A multiple-isotope(?14C,δ13C,δ15N)approach . Limnology and Oceanography, 2004, 49(5):1687~1702.
[46]
Delwiche C C, Likens G E. Biological response to fossil fuel combustion products. In: Stumm W, ed. Global Chemical Cycles and Their Alterations by Man. Berlin: Dahlem Konferenzen, 1977, 73~68.
[47]
Berner R A, Canfield D E. New model for atmospheric oxygen over Phanerozoic time. Am. J. Sci, 1989, 289: 333~361.
[48]
Blair N E, Leithold E, Ford S T, et al. The persistence of memory: The fate of ancient sedimentary organic carbon in a modern sedimentary system. Geochimica et Cosmochimica Acta, 2003, 67(1): 66~73.
[49]
Milliman J D, Syvitski J P M. Geomorphic/ tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. Journal of Geology, 1992, 100: 525~544.
Meybeck M, V?觟r?觟smarty C. Global transfer of carbon by rivers. Global Change Newsletter, 1999, 37: 18~19.
[52]
Thurman E M, ed. Organic Geochemistry of Natural Waters. Martinus Nijhoff, Dortrecht, 1985. 497.
[53]
Mulholland P J. Deposition of riverborne organic carbon in floodplain wetlands and deltas. In: Flux of Organic Carbon by Rivers to the Oceans, Report of a Workshop, CONF-8009140, and U.S. Dep. Of Energy, Washington, D.C:1980, 142~172.
[54]
Mulholland P J, Elwood J W. The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle. Tellas, 1982, 34: 490~499.
[55]
Kempe S. Sinks of the anthropologically enhanced carbon cycle in surface fresh waters. J.Geophys.Res, 1984, 89(D3): 4657~4676.
[56]
Schlesinger W H. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature, 1990, 348: 232~234.
[57]
Stallard R F. Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial. Global Biogeochemical Cycles, 1998, 12(2): 231~257.
[58]
Hooke R L. On the efficacy of humans as geomorphic agents. GSA Today, 1994, 4(9): 218~225.
[59]
[the salinity and the composition and concentration of the suspended solids. Geol. Soc.America Bull, 1976, 78: 1203~1232.
[60]
Meade R H, Dunne T, Richey J E. Storage and remobilization of suspended sediment in the lower Amazon River of Brazil. Science, 1985, 228: 488~490.
[61]
Stallard R E. Cross-channel mixing and its effect on sedimentation in the Orinoco River. Water Resour. Res. 1987, 23: 1977~1986.
[62]
Admiraal, Breagen, Jacobs. Fixation of dissolved silicate and sedimentation of biogenic silicate in the lower river Rhine during diatom blooms. Biogeochemistry, 1990, 9: 175~195.
[63]
Turner R F, Rabalais N N. Coastal entrophication near the Mississippi River delta. Nature, 1994, 368: 619~621.
[64]
Richey J E, Melack J M, Aufdenkampe A K, et al. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature, 2002, 416: 617~620.
[65]
Cole J J, Caraco N F. Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Mar Freshwater Res, 2002, 52: 101~110.