全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

拉萨河流域高山水热分布观测结果分析

DOI: 10.11820/dlkxjz.2009.02.009, PP. 223-230

Keywords: 降水梯度,气温直减率,青藏高原,山地气候,水热条件

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用架设在念青唐古拉山南坡9个海拔高度(4300~5500m)的自动气象站一年(2006年8月1日-2007年7月31日)的实测数据,对山坡1.5m高度的气温和季风期(6-9月)降水随海拔梯度和时间的变化进行了分析。表明4300~4950m存在一个逆温带,逆温时间自10月至翌年4月。年逆温频率为11.5%(42天)。4300~5500m年平均气温直减率为0.61℃/100m;念青唐古拉山南坡季风期各月最大降水带都在海拔5100m。最大降水高度以下,山坡降水量递增率为4~7mm/100m,最大降水高度以上,降水递减率数值上为降水递增率的1.6~2.3倍。7月和8月降水量占季风期总降水量比例大于6月和9月。降水月内分配山坡上部总体较山坡下部均匀。降水主要发生在400-1000以外的时间段,而大-中雨(3~14mm/h)主要发生在1800-2200。山坡强降水段相对集中在4650~5100m海拔高度。

References

[1]  Pauli H, Gottfried M, Grabherr G. Effects of climate change on mountain ecosystems: Upward shifting of alpine plants. World Resource Review, 1996, 8(3): 382~390.
[2]  Giambelluca T W, Nullet D. Influence of the trade-wind inversion on the climate of a leeward mountain slope in Hawaii. Clim. Res., 1991, 1: 207~216.
[3]  Celleri R, Willems P, Buytaert W, et al. Space-time rainfall variability in the Paute Basin, Ecuadorian Andes. Hydrological Processes, 2007, 21(24): 3316~3327.
[4]  Lookingbill T R, Urban D L. Spatial estimation of air temperature differences for landscape-scale studies in montane environments. Agricultural and Forest Meteorology, 2003, 114: 141~151.
[5]  Sen Z, Habib Z. Spatial precipitation assessment with elevation by using point cumulative semivariogram technique. Water Resources Management, 2000, 14: 311~325.
[6]  Chung U, Seo H H , Hwang K H, et al. Minimum temperature mapping over complex terrain by estimating cold air accumulation potential. Agricultural and Forest Meteorology, 2006, 137: 15~24.
[7]  周幼吾, 郭东信, 邱国庆等. 中国冻土. 北京: 科学出版 社, 2000: 354~356.
[8]  Ueda H, Yasunari T. Role of warming over the Tibetan Plateau in early onset of the summer monsoon over the Bay of Bengal and the South China Sea. Journal of the Meteorological Society of Japan, 1998, 76(1): 1~12.
[9]  徐彦伟, 康世昌, 周石硚. 青藏高原纳木错流域夏秋季 大气降水中δ18O 与水汽来源及温度的关系. 地理科学, 2007, 27(5): 718~723.
[10]  Du M, Kawashima S, Yonemura S, et al. Temperature distribution in the high mountain regions on the Tibetan Plateau -Measurement and simulation. In Modelling and Simulation Society of Australia and New Zealand (ISBN: 978 -0 -9758400 -4 -7). MODSIM 2007 International Congress on Modelling and Simulation. NZ Christchurch, 2007, 2146~2152.
[11]  傅抱璞, 翁笃鸣, 虞静明等. 小气候学. 北京: 气象出版 社, 1994: 254.
[12]  Jobbagy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Belowground Processes and Global Change, 2000, 10 (2): 423~436.
[13]  Stephenson N L. Climatic controls on vegetation distribution: the role of the water balance. Am. Nat.,1990,135(5): 649~670.
[14]  Korner C. The use of ‘altitude' in ecological research. TRENDS in Ecology and Evolution, 2007, 22 (11): 569~ 574.
[15]  Benavides R, Montes F, Rubio A, et al. Geostatistical modelling of air temperature in a mountainous region of Northern Spain. Agricultural and Forest Meteorology, 2007, 146:173~188.
[16]  Stahl K, Moore R D, Floyer J A, et al. Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density. Agricultural and Forest Meteorology, 2006, 139: 224~236.
[17]  Carrera-Hernandez J J, Gaskin S J. Spatio-temporal analysis of daily precipitation and temperature in the Basin of Mexico. Journal of Hydrology, 2007, 336: 231~249.
[18]  Chang C L, Lo S L, Yu S L. Applying fuzzy theory and genetic algorithm to interpolate precipitation. Journal of Hydrology, 2005, 314: 92~104.
[19]  Simonovic S P, Asce M, Li L. Methodology for assessment of climate change impacts on large-scale flood protection system. Journal of Water Resources Planning and Management, 2003, 129(5): 361~371.
[20]  Xu J. The water fluxes of the Yellow River to the sea in the past 50 years, in response to climate change and human activities. Environmental Management, 2005, 35 (5): 620~631.
[21]  Tardif J, Camarero J J, Ribas M, et al. Spatiotemporal varibility in tree growth in the central Pyrenees- climatic and site influences. Ecological Monographs, 2003, 73(2): 241~ 257.
[22]  Lin C, Chen C. A study of orographic effects on mountain generated precipitation systems under weak synoptic forcing. Meteorol. Atmos. Phys., 2002, 81: 1~25.
[23]  傅抱璞. 山地气候. 北京:科学出版社,1983: 94~114.
[24]  Baruch Z. Ordination and classification of vegetation along an altitudinal gradient in the Venezuelan paramos. Plant Ecology, 1984, 55: 115~126.
[25]  Teegavarapu R S V. Use of universal function approximation in variance-dependent surface interpolation method: An application in hydrology. Journal of Hydrology, 2007, 332: 16~29.
[26]  游庆龙, 康世昌, 田克明等. 青藏高原念青唐古拉峰地 区气候特征初步分析. 山地学报, 2007, 25(4): 497~504.
[27]  高由禧, 蒋世逵, 张谊光等. 西藏气候. 北京: 科学出版 社, 1984: 70.
[28]  刘潮海, 施雅风. 中国冰川资源及其分布特征: 中国冰 川目录编制完成. 冰川冻土, 2000, 22(2): 106~112.
[29]  Li C, Yanai M. The onset and interannual variability of the Asian summer monsoon in relation to land -sea thermal contrast. Journal of Climate, 1996, 9(2): 358~375.
[30]  Yin Z, Lin Z, Zhao X. Temperature anomalies in central and eastern Tibetan Plateau in relation to general circulation patterns during 1951 -1993. International Journal of Climatology, 2000, 20(12): 1431~1449.
[31]  Yang M, Yao T, Gou X, et al. Comparison analysis of the summer monsoon precipitation between northern and southern slopes of Tanggula Mountains, Qinghai -Xizag (Tibetan) Plateau: A case study in summer 1998. Hydrological Processes, 2007, 21(14): 1841~1847.
[32]  Yang M, Yao T, Gou X, et al. The soil moisture distribution, thawing -freezing processes and their effects on the seasonal transition on the Qinghai -Xizang (Tibetan) plateau. Journal of Asian Earth Sciences, 2003, 21 (5): 456~464.
[33]  傅抱璞, 翁笃鸣, 虞静明等. 小气候学. 北京: 气象出版 社, 1994: 236.
[34]  伍光和, 田连恕, 胡双熙等. 自然地理学. 北京: 高等教 育出版社, 2000: 72.
[35]  芮孝芳. 水文学原理. 北京: 中国水利水电出版社,2004: 44.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133