全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

放射性碳同位素在土壤碳循环中的应用

DOI: 10.11820/dlkxjz.2004.04.006, PP. 43-51

Keywords: 放射性碳同位素,土壤碳循环

Full-Text   Cite this paper   Add to My Lib

Abstract:

文中介绍了放射性碳同位素方法在土壤碳循环中的应用,分析了在土壤有机质、土壤CO2气体研究中的主要方法和模型,并指出土壤有机质的放射性测定可以研究较长时间尺度的碳循环(十几年、几十年至更长时间尺度),而土壤CO2气体的放射性测定可以研究短期(季节变化和年变化)内碳的动态。放射性碳同位素用于土壤中细根周转时间的计算、土地利用变化等方面的研究成果及方法也在文中分别作了介绍和分析。最后提出了国内研究应加强的领域和未来利用放射性碳同位素方法研究土壤碳循环的重点研究方向和发展趋势。

References

[1]  Schimel D S. Terrestrial ecosystems and the carbon cycle. Global Change Biology. 1995, 1: 77~91.
[2]  陈庆强, 沈承德, 易惟熙等. 土壤碳循环研究进展. 地球科学进展. 1998,13(6):555~563.
[3]  Torn M S, Trumbore S E, Chardwick O A, et al. Mineral control of soil organic carbon storage and turnover. Nature. 1997, 389: 170~173.
[4]  Trumbore S E. Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements. Global Biogeochemical Cycles. 1993, 7(2): 275~290.
[5]  Balesdent J. The turnover of soil organic fractions estimated by radiocarbon dating. Sci Total Environ. 1987, 62: 405~408.
[6]  Trumbore S E, Vogel J S, Southon J R. AMS 14C measurements of fractionated soil organic matter: an approach to deciphering the soil carbon cycle. Radiocarbon. 1989, 31: 644~654.
[7]  Stuiver M, Polach H. Reporting of 14C data. Radiocarbon. 1977, 17: 355~363.
[8]  Donahue D, Linick T, Tull J. Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements. Radiocarbon. 1990, 32: 135~142.
[9]  Trumbore S E, Chadwick O A, Amundson R. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science. 1996, 272: 393~396.
[10]  Jenkinson D S, Harkness D D, Vance E D, et al. Calculating net primary production and annual input of organic matter to soil from the amount and radiocarbon content of soil organic matter. Soil Biology and Biochemistry. 1990, 24: 295~308.
[11]  Harrison K, Broecker W, Bonani G. The effect of changing land use on soil radiocarbon. Science. 1993, 262: 725~726.
[12]  Wang Y, Amundson R, Trumbore S E. Radiocarbon dating of soil organic matter. Quaternary Research. 1996, 45: 282~288.
[13]  Neff J C, Townsend A R, Gleixner G, et al. Variable effects of nitrogen additions on the stability and turnover of soil carbon. Nature. 2002, 419: 915~917.
[14]  Cherkinsky A E, Brovkin V A. Dynamics of radiocarbon in soils. Radiocarbon. 1993, 35 (3): 363~367.
[15]  Levin I, Kromer B. Twenty years of atmospheric (CO2)-C-14 observations at Schauinsland station,Germany. Radiocarbon. 1997, 39: 205~218.
[16]  Levin I, Hesshaimer V. Radiocarbon-a unique tracer of the global carbon cycle dynamics. Radiocarbon. 2000, 42: 69~80.
[17]  Suess H E. Radiocarbon content in modern wood. Science. 1955, 122: 415~417.
[18]  Hasson P J, Edwards N T, Garten C T, et al. Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry. 2000, 48: 115~146.
[19]  Post W, Izaurralde R, Mann L, et al. Monitoring and verifying soil organic carbon sequestration. In: Rosenberg N, Izaurralde R, Malone E. Carbon sequestration in soils—Science, Monitoring, and Beyond. Proceedings of the St. Michaels Workshop. Columbus: Battelle Press. 1998, 41~66.
[20]  Trumbore S E. Age of soil organic matter and soil respiration: Radiocarbon constraints on belowground C dynamics. Ecological Applications. 2000, 10: 399~411.
[21]  Jackson R B, Mooney H A, Schulze E D. A global budget for fine root biomass, surface area, and nutrient contents. Proc. Natl. Acad. Sci. USA. 1997, 94: 7362~7366.
[22]  Fahey T J, Hughes J W. Fine root dynamics in a northern hardwood forest ecosystem, Hubbard Brook Experimental Forest, NH. Journal of Ecology. 1994, 82: 533~548.
[23]  Gaudinski J B, Trumbore S E, Davidson E A, et al. The age of fine-root carbon in three forests of the eastern United States measured by radiocarbon. Oecologia. 2001, 129: 420~429.
[24]  Tierney G L, Fahey T J. Fine root turnover in a northern hardwood forest: a direct comparison of the radiocarbon and minirhizotron methods. Canadian Journal of Forest Research. 2002, 32: 1692~1697.
[25]  Richter D D, Markewitz D, Trumbore S E, et al. Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature. 1999,400: 56~58.
[26]  Perrin R M S, Willis E H, Hodge, D A H. Dating of humus podzols by residual radiocarbon activity. Nature. 1964, 202: 165~166.
[27]  Scharpenseel H W, Becher H P. 25 years of radiocarbon dating soils: a paradigm of erring and learning. Radiocarbon. 1991, 33: 238.
[28]  Schlesinger W H. Evidence from chronosequence studies for a low carbon-storage potential of soil. Nature. 1990, 348: 232~234.
[29]  Wang Y, Amundson R. The impact of land use change on C turnover in soils. Global Biogeochemical Cycles. 1999, 13 (1): 47~57.
[30]  Oades J M. The retention of organic matter in soils. Biogeochemistry. 1994, 5: 35~70.
[31]  Wang Y, Hsieh Y P. Uncertainties and novel prospects in the study of the soil carbon dynamics. Chemosphere. 2002, 49: 791~804.
[32]  Arnold, J R, Libby W F. Age determinations by radiocarbon content: Checks with samples of known age. Science. 1949, 110: 678~680.
[33]  Hsieh Y P. Radiocarbon signatures of turnover rates in active soil organic carbon pools. Soil Science Society of America Journal. 1993, 57: 1020~1022.
[34]  Trumbore S E, Harden J W. Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area. Journal of Geophysical Research. 1997, 102 ( D24): 28817~28830.
[35]  Burchuladze A A, Chudy M, Eristave I V, et al. Anthropogenic 14C variations in atmospheric CO2 and wines. Radiocarbon. 1989, 31: 771~776.
[36]  Chen Q Q, Sun Y M, Shen C D, et al. Organic matter turnover rates and CO2 flux from organic matter decomposition of mountain soil profiles in the subtropical area, south China. Catena. 2002, 49: 217~229.
[37]  Wang Y, Amundson R, Niu X F. Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurements of soil CO2 flux. Global Biogeochemical Cycles. 2000, 14: 199~211.
[38]  John B, Pandey H N, Tripathi R S. Vertical distribution and seasonal changes of fine and coarse root mass in Pinus kesiya Royle Ex.Gordon forest of three different ages. Acta Oecologica. 2001,22: 293~300.
[39]  Vogt K A, Vogt D J, Bloomfield J. Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil. 1998, 200: 71~89.
[40]  Aber J D, Melillo J M, Nadelhoffer K J, et al. Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: a comparison of two methods. Oecologia. 1985, 66: 317~321.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133