全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

元胞模型在地貌演化模拟中的应用浅析

DOI: 10.11820/dlkxjz.2005.01.012, PP. 105-115

Keywords: 地貌演化,模拟,突现,元胞模型,元胞自动机

Full-Text   Cite this paper   Add to My Lib

Abstract:

元胞自动机是一个时空离散的动力学模型,是复杂系统的研究方法之一。从80年代后期开始,在许多领域都得到广泛的应用与发展。地貌是一个非线性动态复杂系统,元胞自动机模型(或更广意义上的元胞模型)为研究复杂地貌系统的动态演化提供了新的方法论工具。本文根据近些年国内外该领域的研究成果,对元胞模型在地貌演化模拟中的应用及进展进行了探讨,并分析了元胞模型方法在地貌演化模拟中的优势和不足。

References

[1]  Bates PD, Anderson MG, Hervouet JM,Hawkes JC. Investigating the behaviour of two-dimensional finite element models of compound channel flow. Earth Surface Processes and Landforms, 1997, 22: 3~17.
[2]  Nicholas AP, Walling DE. Modelling flood hydraulics and overbank deposition on river floodplains. Earth Surface Processes and Landforms, 1997, 22: 59~77.
[3]  Jonathan Phillips. Nonlinear dynamics and the evolution of relief. Geomorphology, 1995, 14: 57~64.
[4]  Ahnert, F. Brief description of a comprehensive three-dimensional process-response model of landform development. Zeitschrift fuer Geomorphologie, 1976, 25 (Suppl.), 29~49.
[5]  Howard AD. A detachment limited model of drainage basin evolution. Water resources research, 1994, 30(7): 2261~2285.
[6]  周成虎, 孙战利,谢一春. 地理元胞自动机研究, 北京: 科学出版社, 1999, 1~60.
[7]  Clarke, K.C., GAYDOS, L.J. Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. Int. J. Geographical Information Science, 1998, 12: 699± 714.
[8]  Clarke, K.C., Riggan, P. and Brass, J.A. A cellular Automaton Model of Wildfire Propagation and Extinction. Photogrammetric Engineering and Remote Snesing, 1995, 60: 1355-1367.
[9]  Murray AB, Paola C. A cellular model of braided rivers. Nature, 1994, 371: 54~57.
[10]  Wei Luo. LANDSAP: a coupled surface and subsurface cellular automata model for landform simulation.Computers & Geosciences, 2001, 27: 363~367.
[11]  Murray AB, Paola C. Properties of a cellular braided-stream model. Earth Surface Processes and Landforms, 1997, 22: 1001~1025.
[12]  Favis-Mortlock, D. A self-organizing dynamic systems approach to the simulation of rill initiation and development of hillslopes. Computers & Geosciences, 1998, 24 (4): 353~372.
[13]  Coulthard, T. J. Macklin, M. G. & Kirkby, M. J. A cellular model of Holocene upland river basin and alluvial fan evolution. Earth Surface Processes and Landforms. 2002, 27: 269~288.
[14]  Tucker GE, Slingerland RL. Erosional dynamics, flexural isostasy, and long-lived escarpments: A numerical modelling study. Journal of Geophysical Research, 1994, 99: 12 229~12 243.
[15]  Desmet PJJ, Govers G.. Comparison of routing algorithms for digital elevation models and their implications for predicting ephemeral gullies. International Journal of Geographical Information Systems, 1996, 10(3): 311~331.
[16]  Quinn P, Beven KJ, Chevallier P, Planchon O. The prediction of hillslope flow paths for distributed hydrological modelling using Digital Terrain Models. Hydrological Processes, 1991, 5: 59~79.
[17]  O’Callaghan, J. F., Mark,D. M. The extraction of drainage networks from digital elevation data. Computer Vision graphics and Image Proceedings, 1984, 28: 323~344.
[18]  Quintijn Clevis, Poppe de Boer, Maarten Wachter. Numerical modelling of drainage basin evolution and three-dimensional alluvial fan stratigraphy. Sedimentary Geology 2003, 163: 85~110.
[19]  Chase, G.C. Fluvial landsculpting and the fractal dimension of topography. Geomorphology, 1992, 5: 39~57.
[20]  Crave, A. and Davy, P. A stochastic “precipitation” model for simulating erosion/sedimentation dynamics. Computers and Geosciences, 2001, 27: 815~827.
[21]  D.H. De Boer. Self-organization in fluvial landscapes: sediment dynamics as an emergent property. Computers & Geosciences, 2001, 27: 995~1003.
[22]  Ritchie, B.D., Hardy, S. and Gawthorpe, R.L. Three-dimensional modelling of coarse-grained clastic deposition in sedimentary basins. Journal of Geophysical Research B, 1999, 104: 17759~17780.
[23]  罗 平, 杜清运, 何素芳. 人口密度模型与CA集成的城市化时空模拟实验. 测绘科学, 2003, 28(4): 18~21.
[24]  汤君友 等. 试论元胞自动机模型与LUCC时空模拟. 土壤, 2003, 35(6): 456~460.
[25]  曾庆存, 郭东建, 李荣凤. 泥沙冲积和三角洲发育的数值模拟. 自然科学进展, 1995, 5(3): 309~314.
[26]  Morgan et al. The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms, 1998, 23(6): 527~544.
[27]  Kirkby, M.J. A two-dimensional simulation model for slope and stream evolution. In: Abrahams, A.D. (Ed.), Hillslope Processes. Binghamton Symposia in Geomorphology International Series, 1986, Vol.16. George Allen and Unwin, Boston, pp. 203~222.
[28]  Willgoose, G., Bras, R.L., Rodriguez-Iturbe, I. A coupled channel network growth and hillslope evolution model 1. Theory. Water Resources Research, 1991a, 27 (7): 1671~1684.
[29]  Willgoose, G., Bras, R.L., Rodriguez-Iturbe, I., A coupled channel network growth and hillslope evolution model 2. Nondimensionalization and applications. Water Resources Research, 1991b, 27 (7): 1685~1696.
[30]  Smith, T.R., Birnir, B., Merchant, G.E. Towards an elementary theory of drainage basin evolution: I. The theoretical basis. Computers & Geosciences, 1997, 23: 811~822.
[31]  S. Wolfram. Cellular automata as models of complexity. Nature, 1984, 311: 419~424.
[32]  Chopard, B., Luthi, P.O., and Qucloz, P.A. Traffic Models of a 2D road network, proceedings of the 3rd CM users’ Meeting, Parma, 1995.
[33]  Coulthard TJ, Kirkby MJ, Macklin MG. Modelling geomorphic response to environmental change in an upland catchment. Hydrological Processes, 2000, 14: 2031~2045.
[34]  Braun J, Sambridge M. Modelling landscape evolution on geological time scales: a new method based on irregular spatial discretization. Basin Research, 1997, 9:27~52.
[35]  Tucker GE, Lancaster ST, Gasparini NM, Bras RL, Rybarczyk SM. An object-oriented framework for hydrologic and geomorphic modeling using triangulated irregular networks. Computers and Geosciences, 2001, 27(8): 959~973.
[36]  Tucker, G.E., and Slingerland, R.L. Predicting sediment flux from fold and thrust belts. Basin Research, 1996, 8: 329~349.
[37]  Coulthard TJ. Landscape evolution models: a software review. Hydrological Processes, 2001, 15: 165~173.
[38]  Freeman TG. Calculating catchment area with divergent flow based on a regular grid. Computers and Geosciences, 1991, 17: 413~422.
[39]  Jenson, S. K., and Domingue,J. O. Extracting topographic structure form digital elevation data for geographic information system analysis. Photogrammatric Engineering and Remote Sensing, 1988, 54:1593~1600.
[40]  Favis-Mortlock, John Boardman, Anthony J. Parsons and Bruce Lascelles. Emergence and erosion: a model for rill initiation and development. Hydrological Process, 2000, 14: 2173~2205.
[41]  Zhang W, Montgomery DR. Digital elevation model grid size, landscape representation, and hydrologic simulations. Water Resources Research, 1994, 30: 1019~1028.
[42]  陈建平 等. 基于GIS和元胞自动机的荒漠化演化预测模型. 遥感学报, 2004, 8(3): 254~260.
[43]  张山山. 基于CA的时空过程模拟建模方法. 武汉大学学报(信息科学版), 2004, 29(2): 175~178.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133