全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

平缓地区地形湿度指数的计算方法

DOI: 10.11820/dlkxjz.2006.06.010, PP. 87-93

Keywords: DEM,插值,地形湿度指数,多流向算法,平缓地区,最大下坡

Full-Text   Cite this paper   Add to My Lib

Abstract:

地形湿度指数(topographicwetnessindex)可定量模拟流域内土壤水分的干湿状况,在流域的土壤及分布式水文模型等研究中具有重要的意义。但现有的地形湿度指数计算方法在应用于地形平缓地区时会得到明显不合理的结果,即在河谷地区内,地形湿度指数仅在狭窄的汇水线上数值较高,而在汇水线以外的位置则阶跃式地变为异常低的地形湿度指数值。本文针对此问题对地形湿度指数的计算方法提出改进以多流向算法MFD-fg计算汇水面积,相应地以最大下坡计算地形湿度指数,再基于一个正态分布函数对河谷平原地区内的地形湿度指数进行插值处理。应用结果表明,所得地形湿度指数的空间分布不但能合理地反映平缓地区坡面上的水分分布状况,并且在河谷地区内地形湿度指数值也都比较高,其空间分布呈平滑过渡,因而整个研究区域的水分分布状况得到了比较合理的反映。

References

[1]  Beven K J, Kirkby N J. A physically based variable contributing area model of basin hydrology. Hydro. Sci. Bull., 1979, 24 (1): 43~69.
[2]  Wolock D M, Hornberger G M, Musgrove T J. Topographic effects on flow path and surface water chemistry of the Llyn Brianne catchments in Wales. J. Hydrol., 1990, 115: 243~259.
[3]  Moore I, Gessler P, Nielsen G, et al. Soil attribute prediction using terrain analysis. Soil Sci. Soc. Am. J., 1993, 57(2): 443~452.
[4]  孔凡哲, 芮孝芳. 基于地形特征的流域水文相似性. 地理研究, 2003, 22( 6) : 709~715.
[5]  张彩霞, 杨勤科, 李锐. 基于DEM的地形湿度指数及其应用研究进展. 地理科学进展, 2005, 24( 6) : 116~123.
[6]  Ambroise B, Beven K J, Freer J. Towards a generalization of the TOPMODEL concepts: Topographic indices of hydrologic similarity. Water Resour. Res., 1996, 32(7): 2135~2145.
[7]  Quinn P, Beven K, Chevalier P, et al. The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models. Hydrol. Process., 1991, 5: 59~79.
[8]  Wolock D M, McCabe G J. Comparison of single and multiple flow direction algorithms for computing topographic parameters. Water Resour. Res., 1995, 31(5): 1315~1324.
[9]  秦承志, 朱阿兴, 李宝林等. 基于栅格DEM的多流向算法述评. 地学前缘, 2006, 13( 3) : 91~98.
[10]  Sorensen R, Zinko U, Seibert J. On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrol. Earth Sys. Sci. Discuss., 2005, 2: 1807~1834.
[11]  孔凡哲, 芮孝芳. 一种地形指数计算方法在Topmodel 洪水模拟计算中的应用. 水文, 2003, 23( 3) : 16~19.
[12]  Hjerdt K, McDonnell J, Seibert J, et al. A new topographic index to quantify downslope controls on local drainage. Water Resour. Res., 2004, 40, W05602, doi: 10.1029/2004WR003130.
[13]  Burrough P A, van Gaans P F M, MacMillan R A. High- resolution landform classification using fuzzy k- means. Fuzzy Sets and Systems, 2000, 113: 37~52.
[14]  秦承志, 李宝林, 朱阿兴等. 水流分配策略随下坡坡度变化的多流向算法. 水科学进展, 2006, 17( 4) : 450~456.
[15]  Planchon O, Darboux F. A fast, simple and versatile algorithm to fill the depressions of digital elevation models. Catena, 2001, 46(2- 3): 159~176.
[16]  Kirkby M J. Hydrograph modeling strategies. In: Peel R, Chisholm M, Haggett P, eds. Process in Physical and Human Geography. Oxford: Heinemann, 1975, 69~90.
[17]  O’Loughlin E M. Prediction of surface saturation zones in natural catchments by topographic analysis. Water Resour. Res., 1986, 22(5): 794~804.
[18]  邓慧平, 李秀彬. 地形指数的物理意义分析. 地理科学进展, 2002, 21( 2) : 103~110.
[19]  Quinn P, Beven K J, Lamb R. The ln (α/tanβ) index: how to calculate it and how to use it within the TOPMODEL framework. Hydrol. Process., 1995, 9: 161~182.
[20]  熊立华, 郭生练, O’Connor K. 利用DEM提取地貌指数的方法述评. 水科学进展, 2002, 13( 6) : 775~780.
[21]  Güntner A, Seibert J, Uhlenbrook S. Modeling spatial patterns of saturated areas: An evaluation of different terrain indices. Water Resour. Res., 2004, 40, W05114, doi:10.1029/2003WR002864.
[22]  Pan F, Peters- Lidard C, Sale M, et al. A comparison of geographical information system- based algorithms for computing the TOPMODEL topographic index. Water Resour. Res., 2004, 40, W06303, doi: 10.1029/2004WR003069.
[23]  Zhang W, Montgomery D R. Digital elevation model grid size, landscape representation, and hydrologic simulations. Water Resour. Res., 1994, 30(4): 1019~1028.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133