全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

生态系统模型中物候的参数化方法研究进展

DOI: 10.11820/dlkxjz.2006.06.008, PP. 68-75

Keywords: 参数化,生态系统模型,物候,叶面积指数

Full-Text   Cite this paper   Add to My Lib

Abstract:

物候和叶面积指数的季节动态在落叶林中是决定生态系统净生产力的关键因素。尽管物候对能量和CO2通量的影响可以简单地通过描述发芽和落叶的时间以及叶面积指数的季节动态来表示,但是由于对驱动物候的物理过程缺乏全面正确的理解,在陆地生态系统模型中物候就成为最难以参数化的一个过程。目前,在陆地生态系统模型中描述物候主要有两种不同的方法一种是基于气候变量(主要是温度或积温)的经验方法,即是通过建立物候不同阶段与气候变量的经验关系来预测关键物候事件发生的时间。另一种方法是基于碳吸收的物候参数化方案,物候的任何阶段都和当前的碳平衡相联系。在生态系统模型中,基于碳吸收的物候参数化方法可以大大降低物候模拟的经验性,提高模型的适用性和模拟精度,比基于气候变量的经验模型更适于模拟未来气候变化影响。未来随着生理和分子水平上,对控制物候和LAI动态过程机理的揭示,建立基于过程的物候参数化方案和LAI动态模拟模型就成为生态系统模型或气候模型的发展方向。

References

[1]  吕昭智, 李莉, 田长彦等. 新疆北部20 年棉花物候计算和分析—以炮台镇为例. 干旱区地理, 2003, 26 ( 4) : 340~ 344.
[2]  孟亚利, 曹卫星, 周治国等. 基于生长过程的水稻阶段发育与物候期模拟模型. 中国农业科学, 2003, 36( 11) : 1362~ 1367.
[3]  李长青, 刘力威. 辽宁自然物候统计分析. 辽宁气象, 2004, 2: 44~46.
[4]  何方. 经济树木物候变化与气候的关系. 经济林研究, 2004, 22( 1) : 1~4.
[5]  Sitch S, Smith B, Prentice I C, et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 2003, 9: 161~185.
[6]  Foley J A, Prentice I C, Ramunkutty N, et al. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics (IBIS). Global Biogeochemical Cycles, 1996, 10: 603~628.
[7]  Cesaraccio C, Spano D, Snyder R L, et al. Chilling and forcing model to predict bud- burst of crop and forest species. Agricultural and Forest Meteorology, 2004, 126: 1~13.
[8]  Menzel A, Estrella N, Fabian P. Spatial and temporal variability for the phonological seasons in Germany from 1951 to 1996. Global Change Biology, 2001, 7: 657~666.
[9]  Kikuzawa K. Phenological and morphological adaptations to the light environment in two woody and two herbaceous plant species. Functional Ecology, 2003, 17: 29~38.
[10]  Gabrielle B, Denoroy P, Gosse G, et al. A model of leaf area development and senescence for winter oilseed rape. Field Crops Research, 1998, 57: 209~222.
[11]  Sigurdsson B D. Elevated
[12]  [CO and nutrient status modified leaf phenology and growth rhythm of young Populus trichocarpa trees in a 3- year field study. Trees, 2001, 15: 403~413.
[13]  Smethurst P, Baillie C, Cherry M, et al. Fertilizer effects on LAI and growth of four Eucalyptus nitens plantations. Forest Ecology and Management, 2003, 176: 531~542.
[14]  Hymus G J, Pontailler J Y, Li J H, et al. Seasonal variability in the effect of elevated CO2 on ecosystem leaf area index in a scrub- oak ecosystem. Global Change Biology, 2002, 8: 931~940.
[15]  Cook A C, Tissue D T, Roberts S W, et al. Effect of long- term elevated
[16]  [CO from natural CO2 springs on Nardus stricta: photosynthesis, biochemistry, growth and phenology. Plant, Cell and Environment, 1998, 21: 417~425.
[17]  Seiwa K. Changes of leaf phenology are dependent on tree height in Acer mono, a deciduous broad- leaved tree. Annals of Botany, 1999, 83: 355~361.
[18]  Chuine I. A unified model for budburst of trees. Journal of Theoretical Biology, 2000, 207: 337~347.
[19]  White M A, Neman R R. Canopy duration has little influence on annual carbon storage in the deciduous broad leaf forest. Global Change Biology, 2003, 9: 967~972.
[20]  Badeck F W, Bondeau A, Bottcher K, et al. Responses of spring phenology to climate change. New Phytologist, 2004, 162: 295~309.
[21]  Osborne C P, Chuine I, Viner D, et al. Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean. Plant, Cell and Environment, 2000, 23: 701~710.
[22]  李胜强, 张福春. 物候信息化及物候时空变化分析. 地理科学进展, 1999, 18( 4) : 352~359.
[23]  White M A, Thornton P E, Runing S W. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochemical Cycles, 1997, 11(2): 217~234.
[24]  Chuine I, Cambon G, Comtois P. Scaling phenology from the local to the regional level: advances from species - specific phonological models. Global Change Biology, 2000, 6: 943~952.
[25]  Baldocchi D D, Falge E, Wilson K B. A spectral analysis of biosphere- atmosphere trace gas flux densities and meteorological variables across hour to multi- year time scales. Agricultural and Forest Meteorology, 2001, 107: 1~27.
[26]  Baldocchi D D, Wilson K B. Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales. Ecological Modelling, 2001, 142: 155~184.
[27]  Arora V K, Boer G J. A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Global Change Biology, 2005, 11: 39~59.
[28]  Law B E, Tuyl S V, Cescatti A, et al. Estimation of leaf area index in open- canopy ponderosa pine forests at different successional stages and management regimes in Oregon. Agricultural and Forest Meteorology, 2001, 108: 1~14.
[29]  Sellers P J, Bounoua L, Collatz G J, et al. Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science, 1996, 271: 1402~1406.
[30]  Cramer W, Kicklighter D W, Bondeau A, et al. Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Global Change Biology, 1999, 5(Suppl.1): 1~15.
[31]  Bondeau A, Kicklighter D W, Kaduk J, et al. Comparing global models of terrestrial net primary productivity (NPP): importance of vegetation structure on seasonal NPP estimates. Global Change Biology, 1999, 5(Suppl.1): 35~45.
[32]  Barr A G, Black T A, et al. Inter- annual variability in the leaf area index of a boreal aspen- hazelnut forest in relation to net ecosystem production. Agricultural and Forest Meteorology, 2004, 126: 237~255.
[33]  Chuine I, Cour P, Rousseau D D. Selecting models to predict the timing of flowering of temperate trees: implications for tree phenology modeling. Plant, Cell and Environment, 1999, 22: 1~13.
[34]  Kramer K Leinonen, I Loustau D. The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forest ecosystems: an overview. International Journal of Biometeorology, 2000, 44: 67~75.
[35]  肖宜安, 何平, 李晓红. 濒危植物长柄双花木开花物候与生殖特性. 生态学报, 2004, 24( 1) : 14~21.
[36]  郑景云, 葛全胜, 赵会霞. 近40 年中国植物物候对气候变化的响应研究. 中国农业气象, 2003, 24( 1) : 28~32.
[37]  徐雨晴, 陆佩玲, 于强. 气候变化对植物物候影响的研究进展. 资源科学, 2004, 26( 1) : 129~136.
[38]  Haxeltine A, Prentice I C. BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability and competition among plant functional types. Global Biogeochemical Cycles, 1996, 10(4): 693~709.
[39]  Kaduk J, Heimann M. A prognostic phenology scheme for global terrestrial carbon cycle. Climate Research,1996,6(1):1~19.
[40]  Rousseaux M C, Hall A J, Sanchez R A. Far- red enrichment and photosynthetically active radiation level influence leaf senescence in field- grown sunflower. Physiologia Plantarum, 1996, 96: 217~224.
[41]  Norby R J, Hartz- Rubin J S, Verbrugge M J. Phenological responses in maple to experimental atmospheric warming and CO2 enrichment. Global Change Biology, 2003, 9: 1792~1801.
[42]  Tanja S, Berninger F, Vesala T, et al. Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring. Global Change Biology, 2003, 9: 1410~1426.
[43]  Wijk M T, Williams M, Shaver G R. Tight coupling between leaf area index and foliage N content in arctic plant communities. Oecologia, 2005, 142: 421~427.
[44]  Wirtz K W. Simulating the dynamics of leaf physiology and Morphology with an extended optimality approach. Annals of Botany, 2000, 86: 753~764.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133