全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2011 

鄱阳湖流域枯水径流演变特征、成因与影响

DOI: 10.11821/yj2011090014

Keywords: 频率分析,概率分布函数,极值流量,鄱阳湖流域

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 选用11种概率分布函数,分析了鄱阳湖流域"五河"6个水文站年最小连续7日平均流量(或称极值流量)。概率分布函数的参数以及拟合优度分别由线性矩与柯尔莫哥洛夫—斯米尔诺夫方法(K-S法)检验,选出最适合该区极值流量分布函数,同时运用Mann-Kendall(M-K)方法对极值流量趋势进行分析,对引起该流域水文极值变化的原因及其影响作了探讨。研究表明:(1)韦克比分布是用于研究鄱阳湖流域水文极值的最佳概率分布函数;(2)李家渡极值流量显著减少,1970年代以后枯水发生频率呈增加趋势;其余五站枯水流量呈增加趋势,枯水事件发生概率减小。其中,虎山和万家埠枯水在1980年代中期以后增加非常显著;外洲枯水流量多年变化最小,李家渡枯水流量多年变化最大;(3)降雨量是影响极值流量最重要的因素,水利工程和森林覆盖率变化有利于枯水流量的增加以及减少流量多年变化的不稳定性;而农业用地的增加显著减少枯水流量,易导致枯水流量变化的不稳定

References

[1]  Milly P C D, Wetherald P T. Increasing risk of great floods in a changing climate. Nature, 2002, 415(6871): 514~517.
[2]  Palmer T N, J R?is?nen. Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature, 2002, 415: 512~514.
[3]  Easterling D E, Meehl A G, Parmesan C, et al. Climate extremes: Observations, modeling, and impacts. Science, 2000, 689: 2068~2074.
[4]  Zhang Qiang, Marco Gemmer, Chen Jiaqi. Climate changes and flood/drought variation and flood risk in the Yangtze Delta, China. Quaternary International, 2008: 62~69.
[5]  Beniston M, Stephenson D B. Extreme climatic events and their evolution under changing climatic conditions. Global and Planetary Change, 2004, 44: 1~9.
[6]  Zhang Qiang, Liu Chun ling, Xu Chong-yu. Observed trends of annual maximum water level and streamflow during past 130 years in the Yangtze River basin, China. Journal of Hydrology, 2006, 324: 255~265.
[7]  谢军, 黄智权, 杨巧言. 江西省自然地理志. 北京: 方志出版社, 2003. 213~219.
[8]  李世勤, 闵骞, 谭国良, 等. 鄱阳湖2006年枯水特征及其成因研究. 水文,2008, 28(6): 73~76.
[9]  郭华, 姜彤. 鄱阳湖流域洪峰流量和枯水流量变化趋势分析. 自然灾害学报, 2008, 17(3): 75~80.
[10]  郭华, 姜彤, 王国杰, 等. 1961~2003年间鄱阳湖流域气候变化趋势及突变分析. 湖泊科学, 2006, 18(5): 443~451.
[11]  闵骞. 鄱阳湖区干旱与变化. 江西水利科技, 2006, 9: 125~128.
[12]  Svensson C, Kundzewicz Z W, Maurer T. Trend detection in river flow series:2.Flood and low-flow index series. Hydrological Sciences-Journal, 2005, 50(5): 811~824.
[13]  David R M. Handbook of Hydrology. New York: McGraw-Hill Professional Publishing, 1993.
[14]  Ana Justel, Daniel Pefia, Rubrn Zamar. A multivariate Kolmogorov-Smimov test of goodness of fit. Statistics & Probability Letters, 1997, 35: 251~259.
[15]  Hosking J R M. L-moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society: Series B, 1990, 52: 105~124.
[16]  Von Storch, V.H. Misuses of statistical analysis in climate research. In: Storch H V, Navarra A. Analysis of climate variability: Application of statistical techniques. Berlin: Springer-Verlag, 1995. 11~26.
[17]  Sanjiv Kumar, Venkatesh Merwade. Streamflow trends in Indiana: Effects of long term persistence, precipitation and subsurface drains. Journal of Hydrology, 374: 171~183.
[18]  Kulkarni A, H von Stroch. Monte Carlo experiments on the effect of serial correlation on the Mann-Kendall test of trend. Meteorologische Zeitschrift, 1995, 4(2): 82~85.
[19]  Zhang Qiang, Xu Chong-Yu, Zhang Zengxin, et al. Spatial and temporal variability of precipitation maxima during 1960~2005 in the Yangtze River basin and possible association with large-scale circulation. Journal of Hydrology, 2008, 353: 215~227.
[20]  王英, 曹明奎, 陶波. 全球气候变化背景下中国降水量空间格局的变化特征. 地理研究, 2006, 25(6): 1031~1040.
[21]  张天宇, 程炳岩, 刘晓冉. 近45年长江中下游地区汛期极端强降水事件分析. 气象, 2007, 33(10): 80~87.
[22]  高歌, 陈德亮, 任国玉, 等. 1956~2000年中国潜在蒸散量变化趋势. 地理研究, 2006, 25(3): 378~387.
[23]  江西文明信息库. http://ziliaoku.jxwmw.cn/huanpoyanghu/pohuliuyu/, 2008-11.
[24]  许炯心. 长江上游干支流的水沙变化及其与森林破坏的关系. 水利学报, 2000, 1: 72~80.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133