全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2011 

基于MERSI和MODIS的太湖水体叶绿素a含量反演

DOI: 10.11821/yj2011020009

Keywords: FY-3A/MERSI,AQUA/MODIS,叶绿素a含量,卫星遥感

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 水体叶绿素a含量的遥感反演是监测水体光学特性、评价水体污染的一个重要指标。本文以FY-3A/MERSI和AQUA/MODIS遥感影像为数据源,结合水体实测的叶绿素a含量,利用两类反射率模型,研究星载数据遥感反演叶绿素a的可行性。研究表明:基于FY-3A/MERSI和AQUA/MODIS可见光-近红外通道的光谱反演模型(Rλ1-1-Rλ2-1)×Rλ3和Rλ1-1×Rλ3在太湖水体叶绿素a含量反演方面取得了较高的精度。基于MERISI通道的模型反演相关系数R2分别在0.60和0.72左右,基于MODIS通道的模型反演相关系数R2分别在0.55和0.65左右。通过比较分析,决定叶绿素a含量反演精度的主要因素包括两个方面,一是通道位置,即蓝波段和近红外波段是叶绿素a反演的敏感波段;其次,卫星空间分辨率,即较高的空间地面分辨率改善了混合像元。因此,MERSI比MODIS对应模型获得了较高的叶绿素a反演精度。这一结果将有助于FY-3A/MERSI遥感数据在环境监测和水体污染领域的进一步研究,为国产卫星的应用提供一定的参考

References

[1]  Reinart A, Kuster T. Comparison of different satellite sensors in detecting cyanobacterial bloom events in the Baltic Sea. Remote Sensing of Environment, 2006,102:74~85.
[2]  刘付程,史学正,于东升,等.太湖流域典型地区土壤全氮的空间变异特征. 地理研究, 2004, 23 (1) : 63~70.
[3]  Moses W J, Gitelson A A, Berdnikov S, et al. Satellite estimation of chlorophyll-a concentration using the red and NIR Bands of MERIS:The Azov Sea case study. IEEE Geoscience and Remote Sensing Letters, 2009,(6):845~849.
[4]  叶晶, 李万彪, 严卫. 利用MODIS数据反演多层云光学厚度和有效粒子半径.气象学报, 2009,67 (4): 613~622.
[5]  Gordan H R, Brown O B, Evans R H, et al. A semianalytic radiance model of ocean color. Journal of Geophysical Research, 1988,93: 10909~10924.
[6]  Mittenzwey K H, Ullrich S, Gitelson A A, et al. Determination of chlorophyll-a of inland waters on the basis of spectral reflectance. Limnology and Oceanography, 1992,37: 147~149.
[7]  Dekker A. Detection of the optical water quality parameters for eutrophic waters by high resolution remote sensing. Ph.D. Thesis, Free University, Amsterdam, The Netherlands, 1993.
[8]  Han L, Rundquist D. Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: A case study in a turbid reservoir. Remote Sensing of Environment, 1997,62:253~261.
[9]  吕恒,江南,罗潋葱. 基于TM 数据的太湖叶绿素a 浓度定量反演.地理科学, 2006,26 (4): 472~476.
[10]  荀尚培, 翟武全, 范伟. MODIS巢湖水体叶绿素a浓度反演模型. 应用气象学报, 2009,20 (1): 95~101.
[11]  Dall'olmo G, Gitelson A A, Rundquist D C, et al. Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands. Remote Sensing of Environment, 2005,96:176~187.
[12]  Gitelson A A, Vina A, Arkebauer T J, et al. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Research Letter, 2003: 30, 1248, doi:10.1029/2002GL016450.
[13]  Gitelson A A, Schalles J F, Hladik C M. Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study. Remote Sensing of Environment, 2007,109:464~472.
[14]  Gitelson A A, Dall'olmo G, Moses W, et al. A simple semi-analytical model for remote estimation of chlorophyll-a in in turbid waters: Validation. Remote Sensing of Environment, 2008,112:3582~3593.
[15]  Broge N H, Mortensen J V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sensing of Environment, 2002,81:45~57.
[16]  Carmichael W W. Health effects of toxin-producing cyanobacteria: "The CyanoHABs". Human and Ecological Risk Assessment, 2001,(7): 1393~1407.
[17]  Moses W J, Gitelson A A, Berdnikov S, et al. Estimation of chlorophyll-a concentration in case II waters using MODIS and MERIS data-successes and challenges. Environment Research Letter, 2009,(4):045005.
[18]  Kucharik C J, Norman J M, Gower S T. Measurements of branch area and adjusting leaf area index indirect measurements. Agricultural and Forest Meteorology, 1998,91:69~88.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133