全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2008 

不同电子受体及盐分输入对河口湿地土壤甲烷产生潜力的影响

DOI: 10.11821/yj2008060011

Keywords: 电子受体,盐分,河口湿地土壤,甲烷产生

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 对闽江河口芦苇(Phragmites australis)湿地土壤甲烷产生潜力及电子受体(硝酸盐,三价铁和硫酸盐)及盐分(氯化钠)输入对其的影响进行了厌氧培养实验及测定。结果表明,芦苇湿地土壤甲烷产生潜力范围是0.0202~0.0871 μg · g-1 · d-1,0~10 cm土壤甲烷产生潜力最大;电子受体及盐分的输入对土壤甲烷产生潜力具有抑制作用,3种电子受体对甲烷产生潜力抑制程度从大到小为硝酸盐>三价铁>硫酸盐,不同浓度硝酸盐与三价铁添加后甲烷产生潜力与对照土壤差异显著(P<0.05),而硫酸盐与盐分的添加抑制作用不显著,对于每一种电子受体及盐分其不同浓度处理对甲烷产生潜力的影响差异也不明显(P>0.05)。

References

[1]  Houghton J H, Ding Y, Griggs D J, et al. Climate Change 2001:The Scientific Basis. Cambridge University Press, New York, USA,2001.
[2]  Moore T R, Roulet N T, Waddington J M. Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands.Climate Change,1998,40:229~245.
[3]  王德宣,吕宪国,丁维新,等.三江平原沼泽湿地与稻田CH4排放对比研究.地理科学,2002,22(4):500~503.
[4]  王长科,吕宪国,周华荣,等.若尔盖高原沼泽土壤氧化甲烷的研究.中国环境科学,2004,24(6):646~649.
[5]  Magenheimer J F, Moore T R, Chmura G L, et al. Methane and carbon dioxide flux from a macrotidal salt marsh, Bay of Fundy, New Brunswich. Estuaries,1996, 19(1):139~145.
[6]  Van der Gon H A C D, Neue H U.Methane emission from a wetland rice field as affected by salinity.Plant and Soil,1995,170:307~313.
[7]  刘剑秋,曾从盛,陈宁.闽江河口湿地研究.北京:科学出版社,2006.331~334.
[8]  Peters V, Conrad R.Sequential reduction processes and initiation of CH4 production upon flooding of oxic upland soils.Soil Biology and Biochemistry, 1996,28: 371~382.
[9]  Jakobsen P, Patrick J W H,Williams B G.Sulfide and methane formation in soils and sediments.Soil Science,1981,132: 279~287.
[10]  Kluber D H, Conrad R.Inhibition effect of nitrate, nitrite,NO and N2O on methanogenesis by Methanosarcina mazei.FEMS Microbiology Ecology, 1998,25(3):331~339.
[11]  Van der Nat F J W A,Middelburg J J.Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus Lacustris.Biogeochemistry, 1998, 43:79~104.
[12]  Chin K, Conrad R. Intermediary metabolism in methanogenic paddy soil and the influence of temperature.FEMS Microbiology Ecology, 1995, 18:85~102.
[13]  Gupta A, Flora J R V, Sayles G D,et al.Methanogenesis and sulfate reduction in chemostats-II. Model development and verification. Water Research, 1994, 28, 795 ~803.
[14]  DeLaune R D, Smith C J, Patrick W H. Methane release from Gulf coast wetlands. Tellus, 1983, 35B: 8~15.
[15]  王长科,吕宪国,蔡祖聪,等.氮肥对三江平原沼泽土氧化CH4的影响.地理科学,2005,25(4):490~494.
[16]  王毅勇,赵志春,宋长春.三江平原毛果苔草湿地CH4排放研究.湿地科学,2005,3(1):37~41.
[17]  王德宣,丁维新,王毅勇.若而盖高原与三江平原沼泽湿地CH4排放差异的主要环境影响因素.湿地科学,2003,1(1):63~67.
[18]  Wassmann R, Neue H U, Bueno C, et al. Methane production capacities of different rice soil derived from inherent and exogenous substrates.Plant and Soil, 1998, 203:227~237.
[19]  Van der Nat F W A, Middelburg J J. Effects of two common macrophytes on methane dynamics in freshwater sediments.Biogeochemistry, 1998,43:79~104.
[20]  Chasar L S,Chanton J P.Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon ,dissolved inorganic carbon and CH4 in a northern Minnesota peatland.Global Biogeochemical Cycle, 2000, 14:1095~1108.
[21]  Dunfield P, Knowles R, Dumont R, et al. Methane production and consumption in temperate and subarctic peat soils: Response to temperature and pH.Soil Biology an d Biochemistry, 1993, 25: 321~326.
[22]  丁维新,蔡祖聪.沼泽甲烷排放及其主要影响因素.地理科学, 2002,22(5): 619 ~625.
[23]  Achtnich C, Bak F,Conrad R. Competition for electron donors among nitrate reducers, ferric iron reducers, sulphate reducers and methanogens in anoxic paddy soil. Biology and Fertility of Soils,1995,19:65~72.
[24]  Chidthaisong A,Conrad R.Turnover of glucose and acetate coupled to reduction of nitrate,ferrie iron and sulfate and to methanogenesis in anoxie ricefield soil.FEMS Microbiology Ecology ,2000,31: 73~76.
[25]  Roden E E, Wetzel R G.Competition between Fe(III)-Reducing and methanogenic bacteria for acetate in iron rich freshwater sediments.Microbial Ecology, 2003,45:252~258.
[26]  卢昌义,叶勇,林鹏,等.海南海莲红树林土壤CH4的产生及其某些影响因素.海洋学报,1998,20(6):132~138.
[27]  俞鸣同.闽江河口北支冬季盐水入侵的分析.海洋学报,1992,11(4):17~22.
[28]  Dasselaar A, Oenemaa O. Methane production and carbon mineralization of size and density fractions of peat soils.Soil Biology and Biochemistry,1999,3:877~886.
[29]  Bergman I, Klarqvist M, Nilsson M.Seasonal variation in rates of methane production from peat of various botanical origins: Effects of temperature and substrate quality.FEMS Microbiology Ecology,2000,33:181~189.
[30]  Avery G B J R, Shannon R D, White J R, et al.Controls on methane production in a tidal freshwater estuary and a peatland:Methane production via acetate fermentation and CO2 reduction.Biogeochemistry,2003,62:19~37.
[31]  Lovley D R, Coates J D,Blunt-Harris E L, et al. Humic substances as electron acceptors for microbial respiration. Nature,1996,382: 445~448.
[32]  Derek R, Lovley, Elizabeth J P. Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments.Applied Environmental Microbiology, 1987,53(11): 2636~2641.
[33]  Bartlett K B, Bartlett D S, Harriss R C, et al. Methane emission along a salt marsh salinity gradient. Biogeochemistry,1987,4:183~202.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133