全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2009 

散射辐射对西藏高原高寒草甸净生态系统CO2交换的影响

DOI: 10.11821/yj2009060023

Keywords: 高寒草甸生态系统,散射辐射,西藏高原,净生态系统CO2交换量

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 2003~2006年在当雄草原站用涡度相关法对西藏高原广泛分布的高寒草甸生态系统的碳通量和常规气象数据进行了连续观测。基于这些数据,根据净生态系统CO2交换量(NEE)对晴朗指数(k)和土壤温度的响应特征,分析了净生态系统CO2交换量与散射辐射之间的关系。依据地面接受的散射辐射量把天气划分为云隙天、晴天和多云天。结果表明,散射辐射不能提高西藏高原高寒草甸生态系统的碳吸收水平。该生态系统的碳收支过程主要受光合有效辐射控制,碳排放过程主要受土壤温度控制;且NEE随k的变化趋势受散射辐射的影响较小,生态系统碳收支更多地受太阳辐射对土壤强烈加温的影响。三种散射辐射天气条件下,NEE随k的变化趋势基本一致,先增加后减小;NEE达最大值时的土壤温度皆为15℃左右,k值皆为0.7~0.8。

References

[1]  Gu L H, Dennis B, Shashi B V, et al. Advantages of diffuse radiation for terrestrial ecosystem productivity. Journal of Geophysical Research, 2002, 107: ACL2-1~ACL2-23.
[2]  Gu L H, Jose D F, Herman H S. Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness: Result from two North American deciduous forests. Journal of Geophysical Research, 1999,104(D24): 31421~31434.
[3]  Fitzjarrald D R, Moore K E, Sakai R K, et al. Assessing the impact of cloud cover on carbon uptake in the northern boreal forest(abstract). Eos Trans. AGU, 1995, 76(17): S125.
[4]  Karl T R, Steurer P M. Increased cloudiness in the United States during the first half of the Twentieth Century: Fact or fiction. Geophysical Research Letters, 1990,17(11): 1925~1928.
[5]  Che H Z, Shi G Y, Zhang X Y, et al. Analysis of 40 years of solar radiation data from China, 1961-2000. Geophysical Research Letters, 2005, 32: 10.1029/2004GL022322.
[6]  Xu L L, Zhang X Z, Shi P L, et al. Modeling the maximum apparent quantum use efficiency of alpine meadow ecosystem on Tibetan Plateau. Ecological Modelling, 2007, 208(2-4): 129~134.
[7]  Chen W J, Black T A, Yang P C, et al. Effects of climatic variability on the annual carbon sequestration by a boreal aspen forest. Global Change Biology, 1999, 5(1): 41~53.
[8]  Janssens I A, Lankreijer H, Matteucci G,et al. Productivity overshadows temperature in determining soil and ecosystem respiration across European forest. Global Change Biology, 2001, 7: 269~278.
[9]  Saigusa N, Yamamoto S, Murayama S, et al. Gross primary production and net ecosystem exchange of a cool-temperate deciduous forest estimated by the eddy covariance method. Agricultural and Forest Meteorology, 2002, 112: 396~404.
[10]  Hirano T, Hirata R, Fujinuma Y, et al. CO2exchange and water vapor exchange of a larch forest in northern Japan. Tellus, 2003, 55(B): 244~257.
[11]  Gu S, Tang Y H, Du M Y, et al. Short-term variation of CO2flux in relation to environmental controls in an alpine meadow on the Qinghai-Tibetan Plateau. Journal of Geophysical Research, 2003, 108: ACL4-1~ACL4-9.
[12]  Gu L H, Fuentes J D, Garstang M, et al. Cloud modulation of surface solar irradiance at a pasture site in southern Brazil. Agricultural and Forest Meteorology, 2001, 106(2): 117~129.
[13]  Dong S T. Studies on the relationship between canopy apparent photosynthesis and grain yield in high-yielding winter wheat. Acta Agronomica Sinica, 1991,17(6): 461~469.
[14]  Liu Z M, Yang J D, Liu X M. Effects of several environmental factors on plant physiology in Qinghai-Xizang Plateau. Journal of Desert Research, 2000,20(3): 309~313.
[15]  石培礼,孙晓敏,徐玲玲,等.西藏高原草原化嵩草草甸生态系统CO2净交换及其影响因子.中国科学D辑, 2006, 36(增刊Ⅰ): 194~203.
[16]  徐玲玲,张宪洲,石培礼,等.青藏高原高寒草甸生态系统净二氧化碳交换量特征.生态学报, 2005, 25(8): 1949~1952.
[17]  罗天祥,李文华,冷允法,等.青藏高原自然植被总生物量的估算与净初级生产量的潜在分布.地理研究, 1998, 17(4): 338~344.
[18]  Baldocchi D D. Measuring and modeling carbon dioxide and water vapour exchange over a temperate broad-leaved forest during the 1995summer drought. Plant Cell Environ. , 1997,20: 1108~1122.
[19]  Freedman J M, Fitzjarrald D R, Moore K E, et al. Boundary layer clouds and vegetation-atmosphere feedbacks. J. Clim. , 2001, 14: 180~197.
[20]  Freedman J M, Fitzjarrald D R, Moore K E, et al. Boundary layer cloud climatology and enhanced forest-atmosphere exchange, paper presented at 23rd Conference on Agricultural and Forest Meteorology. Am. Meteorol. Soc. , 1998.
[21]  Matthew G L, Peter M L, Nigel T R. On the relationship between cloudiness and net ecosystem carbon dioxide exchange in a peatland ecosystem. Ecoscience, 2005,12(1): 53~59.
[22]  Gu L H, Baldocchi D D, Wofsy S C,et al. Response of a Deciduous Forest to the Mount Pinatubo Eruption: Enhanced Photosynthesis. Science, 2003, 299(5615): 2035~2038.
[23]  Hollinger D Y, Kelliher F M, Schulze E D, et al. Forest-atmosphere carbon dioxide exchange in eastern Siberia. Agricultural and Forest Meteorology, 1998, 90(4): 291~306.
[24]  Baldocchi D D, Vogel C A, Hall B. Seasonal variation of carbon dioxide exchange rates above and below a boreal jack pine forest. Agricultural and Forest Meteorology, 1997,83(1-2): 147~170.
[25]  张弥,于贵瑞,张雷明,等. 太阳辐射对长白山阔叶红松林净生态系统碳交换的影响.植物生态学报, 2009, 33(2): 270~282.
[26]  Wofsy S C, Goulden M L, Munger J W, et al. Net Exchange of CO2 in a Mid-Latitude Forest. Science, 1993,260(5112): 1314~1317.
[27]  Greco S, Baldocchi D D. Seasonal variations of CO2and water vapour exchange rates over a temperate deciduous forest. Global Change Biol, 1996, 2: 183~197
[28]  Sakai R K, Fitzjarrald D R, Moore K E, et al. How do forest surface fluxes depend on fluctuating light level?. Am. Meteorol. Soc. , 1996: Paper presented at 22nd Conference on Agricultural and Forest Meteorology.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133