全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2010 

青藏高原高寒草原区域碳估测

DOI: 10.11821/yj2010010010

Keywords: 碳估测,NPP,呼吸,高寒草原,青藏高原

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: CASA(Carnegie-Ames-Stanford Biosphere)模型是一个表征陆地生态系统水、碳素和氮素通量随时间变化的生态系统过程模型。本研究采用MODIS遥感数据与CASA模型相结合的方法计算了青藏高原高寒草原生态系统植被净初级生产力(NPP)总量为20.57×1012g·a-1的碳。同时根据五道梁实验点上得到的经验关系估算了青藏高原高寒草原生态系统区域上的土壤碳排放(Heterotrophic respiration)总量为8.07×1012 g·a-1,因此推算得高寒草原区域内净生态系统生产力(NEP)折算成碳为12.50×1012 g·a-1。

References

[1]  Schlesinger W H, Lichter J. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature, 2001, 411: 466~469.
[2]  Walker B, Will S. A synthesis of GCTE and related research. in IGBP Science, 1997, No.1, IGBP Secretariat, Sweden pp32.
[3]  方精云,朴世龙,赵淑清. CO2失汇与北半球中高纬度陆地生态系统的碳汇. 植物生态学报,2001,25(5):594~602.
[4]  郑度,张荣祖,杨勤业.试论青藏高原的自然地带. 地理学报, 1979,34(1):1~11.
[5]  郑度,李炳元.青藏高原自然环境的演化与分异. 地理研究,1990,9(2):1~10.
[6]  张永强, 唐艳鸿, 姜杰.青藏高原草地生态系统土壤有机碳动态特征. 中国科学(D),2006, 36 (12): 1140~1147.
[7]  杨元合,朴世龙. 青藏高原草地植被覆盖变化及其与气候因子的关系. 植物生态学报,2006, 30 (1):1~8
[8]  Lieth H, Box E. Evapotranspiration and primary productivity; C.W. Thornthwaite Memorial Model. C.W. Thornthwaite Assoc., Centerton-Elmer, NJ. Publ. Cllimatol, 1972,25(2):37~46.
[9]  Lieth H. Primary production: Terrestrial ecosystems. Human Ecol, 1973,1: 303~332.
[10]  Meentemeyer V, Box E O, Thompson R. World patterns and amounts of terrestrial plant litter production. Bioscience, 1982,32:125~128.
[11]  Potter C S, Klooster S A, Brooks V. Interannual variability in terrestrial net primary production: Exploration of trends and controls on regional to global scales. Ecosystems, 1999,2(1): 36~48.
[12]  Monteith J L. Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 1972,9:747~766.
[13]  Potter C S, Randerson J T, Field C B,et al. Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles, 1993,7(4): 811~841.
[14]  Priestley C H B, Taylor R J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev, 1972,100: 81~92.
[15]  Daly C, Taylor G H, Gibson W P, et al. High-quality spatial climate data sets for the United States and beyond. Transactions of the ASAE,2000,43: 1957~1962.
[16]  New M, Hulme M, Jones P D. Global 30-year mean monthly climatology, 1961-1990(New et al.). Available online at from the ORNL Distributed Active Archive Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. 2000.
[17]  Webb R W, Rosenzweig C E, Levine E R. Global soil texture and derived water-holding capacities (Webb et al.), 2000, Available online at from the ORNL Distributed Active Archive Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
[18]  高清竹,万运帆,李玉娥,等. 藏北高寒草地NPP变化趋势及其对人类活动的响应. 生态学报,2007,27(11):4612~4619.
[19]  Raich J W, Rastetter E B, Melillo J M, et al. Potential net primary production in South America: Application of a global model. Ecological Application, 1991, 1:399~429.
[20]  Schindler D W. The mysterious missing sink. Nature, 1999, 398:105~106.
[21]  ZHAO L, LI Y, XU S, et al. Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai-Tibetan plateau. Global Change Biology, 2006, 12:1940~1953.
[22]  KATO T,TANG Y,GU S, et al. Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. Global Change Biology, 2006, 12:1285~1298.
[23]  Pei Z, Ouyang H, Zhou C, Xu X. Carbon balance in an alpine grassland ecosystem on the Tibetan Plateau. Journal of Integrative Plant Biology. 2009,51(5):521~526.
[24]  Knyazikhin Y, Martonchik J V, Myneni R B,et al. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. Journal of Geophysical Research,1998,103: 32257~32276.
[25]  Ciais P, Tans P P, Trolier M, et al. A large northern hemisphere terrestrial CO2 sink indicated by 13C/12C ratio of atmospheric CO2. Science, 1995,269: 1098~1102.
[26]  Schimel D S, House J I, Hibbard K A, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 2001, 414: 169~172.
[27]  Tans P, White J W C. In balance, with a little help from the plants. Science, 1998,281: 183~184.
[28]  罗天祥,李文华,冷允法,等. 青藏高原自然植被总生物量的估算与净初级生产量的潜在分布. 地理研究,1998,17(4):337~344.
[29]  徐兴奎,陈红,LEVY Jason K. 气候变暖背景下青藏高原植被覆盖特征的时空变化及其成因分析. 科学通报,2008,53(4): 456 ~462.
[30]  Thornthwaite C W, Mather J R. Instructions and tables for computing potential evapotranspiration and the water balance. Drexel Inst. Technol. Publ. Clim. 1957,X(3).
[31]  Vorosmarty C J, Moore III B, Grace A L,et al. Continental scale models of water balance and fluvial transport: An application to South America. Global Biogeochem. Cycles, 1989,3:241~265.
[32]  方精云. 探索CO2失汇之谜. 植物生态学报,2002,26(2):255~256.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133