Schlesinger W H, Lichter J. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature, 2001, 411: 466~469.
[2]
Walker B, Will S. A synthesis of GCTE and related research. in IGBP Science, 1997, No.1, IGBP Secretariat, Sweden pp32.
Lieth H, Box E. Evapotranspiration and primary productivity; C.W. Thornthwaite Memorial Model. C.W. Thornthwaite Assoc., Centerton-Elmer, NJ. Publ. Cllimatol, 1972,25(2):37~46.
[9]
Lieth H. Primary production: Terrestrial ecosystems. Human Ecol, 1973,1: 303~332.
[10]
Meentemeyer V, Box E O, Thompson R. World patterns and amounts of terrestrial plant litter production. Bioscience, 1982,32:125~128.
[11]
Potter C S, Klooster S A, Brooks V. Interannual variability in terrestrial net primary production: Exploration of trends and controls on regional to global scales. Ecosystems, 1999,2(1): 36~48.
[12]
Monteith J L. Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 1972,9:747~766.
[13]
Potter C S, Randerson J T, Field C B,et al. Terrestrial ecosystem production: A process model based on global satellite and surface data. Global Biogeochemical Cycles, 1993,7(4): 811~841.
[14]
Priestley C H B, Taylor R J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev, 1972,100: 81~92.
[15]
Daly C, Taylor G H, Gibson W P, et al. High-quality spatial climate data sets for the United States and beyond. Transactions of the ASAE,2000,43: 1957~1962.
[16]
New M, Hulme M, Jones P D. Global 30-year mean monthly climatology, 1961-1990(New et al.). Available online at from the ORNL Distributed Active Archive Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. 2000.
[17]
Webb R W, Rosenzweig C E, Levine E R. Global soil texture and derived water-holding capacities (Webb et al.), 2000, Available online at from the ORNL Distributed Active Archive Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Raich J W, Rastetter E B, Melillo J M, et al. Potential net primary production in South America: Application of a global model. Ecological Application, 1991, 1:399~429.
[20]
Schindler D W. The mysterious missing sink. Nature, 1999, 398:105~106.
[21]
ZHAO L, LI Y, XU S, et al. Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai-Tibetan plateau. Global Change Biology, 2006, 12:1940~1953.
[22]
KATO T,TANG Y,GU S, et al. Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. Global Change Biology, 2006, 12:1285~1298.
[23]
Pei Z, Ouyang H, Zhou C, Xu X. Carbon balance in an alpine grassland ecosystem on the Tibetan Plateau. Journal of Integrative Plant Biology. 2009,51(5):521~526.
[24]
Knyazikhin Y, Martonchik J V, Myneni R B,et al. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. Journal of Geophysical Research,1998,103: 32257~32276.
[25]
Ciais P, Tans P P, Trolier M, et al. A large northern hemisphere terrestrial CO2 sink indicated by 13C/12C ratio of atmospheric CO2. Science, 1995,269: 1098~1102.
[26]
Schimel D S, House J I, Hibbard K A, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 2001, 414: 169~172.
[27]
Tans P, White J W C. In balance, with a little help from the plants. Science, 1998,281: 183~184.
徐兴奎,陈红,LEVY Jason K. 气候变暖背景下青藏高原植被覆盖特征的时空变化及其成因分析. 科学通报,2008,53(4): 456 ~462.
[30]
Thornthwaite C W, Mather J R. Instructions and tables for computing potential evapotranspiration and the water balance. Drexel Inst. Technol. Publ. Clim. 1957,X(3).
[31]
Vorosmarty C J, Moore III B, Grace A L,et al. Continental scale models of water balance and fluvial transport: An application to South America. Global Biogeochem. Cycles, 1989,3:241~265.