全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于FSS-kernelBSS方法的机械故障诊断

, PP. 1557-1561

Full-Text   Cite this paper   Add to My Lib

Abstract:

机械设备发生故障时,故障特征的提取是很重要的.为了从观测信号中分离出不同的故障特征源信号,并根据分离信号准确地进行故障诊断,从观测信号样本出发,提出了基于有限支持样本核函数的盲源分离(FSS-kernelBSS)方法.此方法利用有限的观测样本估计信号的概率分布,得到了评价函数,具有很好的自适应能力.仿真试验结果表明此方法能成功地分离超、亚高斯混合信号,与其他盲源分离方法相比,此方法具有更好的分离性能.将该方法用于转子不平衡和支座松动的复合故障信号的盲分离,分离出了各复合故障的主要频谱.分离结果表明此方法应用于机械设备复合故障诊断中是可行的.

References

[1]  成孝刚,姜华,刘国庆,等.基于参数Parzen窗估计的独立分量分析[J].信号处理,2009,25(3):485-488 Cheng Xiaogang,Jiang Hua,Liu Guoqing,et al.Independent component analysis based on parametric parzen window estimstion[J].Signal Processing,2009,25(3):485-488(in Chinese)
[2]  Ypma A,Leshem A.Blind separation of machine vibration with bilinear forms [C]//Proceedings of 2nd International Workshop on Independent Component Analysis and Blind Signal Separation.Helsinki:IEEE,2000:109-114
[3]  李良敏,温广瑞,王生昌,等.机械故障诊断的遗传-独立分量分析算法[J].农业机械学报,2008,39(11):197-202 Li Liangmin,Wen Guangrui,Wang Shengchang,et al.Genetic algorithm based independent component analysis method in machine fault diagnosis[J].Transactions of the Chinese Society for Agricultural Machinery,2008,39(11):197-202(in Chinese)
[4]  艾延廷,费成巍,张凤玲,等.ICA在航空发动机振动信号盲源分离中的应用[J].振动、测试与诊断,2010,30(6):671-674,711 Ai Yanting,Fei Chengwei,Zhang Fengling,et al.Blind source separation for aero-engines vibration signal by independent component analysis[J].Journal of Vibration,Measurement & Diagnosis,2010,30(6):671-674,711(in Chinese)
[5]  胥永刚,李强,王正英,等.基于独立分量分析的机械故障信息提取[J].天津大学学报,2006,39(9):1066-1071 Xu Yonggang,Li Qiang,Wang Zhengying,et al.Fault information extraction of mechanical equipment based on independent component analysis[J].Journal of Tianjin University,2006,39(9):1066-1071(in Chinese)
[6]  李良敏.基于遗传算法的盲源分离及其在轴承诊断中的应用[J].轴承,2005(9):31-34 Li Liangmin.Application of blind source separation method based genetic algorithm in bearing diagnosis[J].Bearing,2005(9):31-34 (in Chinese)
[7]  吴作伦,杨世锡,冯海涛.基于最小互信息原理的机械振动源分离研究[J].机电工程,2003,20(5):44-46 Wu Zuolun,YangShixi,Feng Haitao.Study on separation of mechanical vibration based on the principle of the minimum mutual information[J].Mechanical & Electrical Engineering Magazine,2003,20(5):44-46(in Chinese)
[8]  张洪渊,史习智.一种任意信号源盲分离的高效算法[J].电子学报,2001,29(10):1392-1396 Zhang Hongyuan,Shi Xizhi.An effective algorithm for blind separation of arbitrary source signals[J].Acta Electronica Sinica 2001,29(10):1392-1396(in Chinese)
[9]  Hyvarinen A,Oja E.A fast fixed point algorithm for independent component analysis[J].Neural Computation,1997,9(7):1483- 1492
[10]  Cardoso J F.High-order contrasts for independent component analysis[J].Neural Computation,1999,11(1):157-192
[11]  Duda R O,Hart P E, Strok D G.模式分类[M].李宏东,等译.2版.北京:机械工业出版社,2009:389-390 Duda R O,Hart P E,Strok D G.Pattern classification[M].Translated by Li Hongdong,et al.2nd ed.Beijing:China Machine Press Edition,2009:389-390(in Chinese)
[12]  Karvanen J,Eriksson J,Koivunen V.Pearson system based method for blind separation [C]//Proceedings of 2nd International Workshop on Independent Component Analysis and Blind Signal Separation.Helsinki:IEEE,2000:585-590
[13]  Barlow H.Unsupervised learning[J].Neural Computation,1989(1):295-311
[14]  Ozertem U,Uysal I,Erdogmus D.Continuously differentiable sample-spacing entropy estimation[J].IEEE Trans Neural Networks,2008,19(11):1978-1984
[15]  Bach F,Jordan M.Kernel independent component analysis[J].Journal of Machine Learning Research,2002(3):1-48

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133