Garnier E,Mossi M,Sagaut P,et al.On the use of shock-capturing schemes for large-eddy simulation[J].Journal of Computational Physics,1999,153:273-311
[2]
Lele S K.Compact finite difference schemes with spectral-like resolution[J].Journal of Computational Physics,1992,103:16-43
[3]
Johnsen E,Larsson J,Bhagatwala A V,et al.Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[J].Journal of Computational Physics,2010,229:1213-1237
[4]
Roe P L.Approximate Riemann solvers,parameter vectors and difference schemes[J].Journal of Computational Physics,1981,43:357-372
[5]
Martin M P,Taylor E M,Wu M,et al.A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J].Journal of Computational Physics,2006,220:270-289
[6]
Liou M S,Stenffen C J.A new flux splitting scheme[J].Journal of Computational Physics,1993,107:23-29
[7]
Shu C W,Osher S.Efficient implementation of essentially non-oscillatory shock-capturing schemes[J].Journal of Computational Physics,1988,77:439-471
[8]
Shen Y,Zha G C.Improvement of weighted essentially non-oscillatory schemes near discontinuities .AIAA-2009-3655,2009
[9]
Jiang G S,Shu C W.Efficient implementation of weighted ENO schemes[J].Journal of Computational Physics,1996,126:202-228
[10]
Taylor E M,Wu M,Martin M P.Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence[J].Journal of Computational Physics,2007,223:384-397
[11]
Garnier E,Mossi M,Sagaut P,et al.On the use of shock-capturing schemes for large-eddy simulation[J].Journal of Computational Physics,1999,153:273-311
[12]
Shen Y,Zha G C.Improvement of weighted essentially non-oscillatory schemes near discontinuities .AIAA-2009-3655,2009
[13]
Jammalamadaka A,Li Z,Jaberi F A.Large-eddy simulation of turbulent boundary layer interaction with an oblique shock wave .AIAA-2010-110,2010
[14]
Taylor E M,Wu M,Martin M P.Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence[J].Journal of Computational Physics,2007,223:384-397
[15]
Grube N E,Taylor E M,Martin M P.Direct numerical simulation of shock-wave/isotropic turbulence interaction .AIAA-2009-4165,2009
[16]
Priebe S,Wu M,Martin M P.Direct numerical simulation of a reflected-shock-wave/turbulent-boundary-layer interaction[J].AIAA Journal,2009,47(5):1173-1185
[17]
Jammalamadaka A,Li Z,Jaberi F A.Large-eddy simulation of turbulent boundary layer interaction with an oblique shock wave .AIAA-2010-110,2010
[18]
Steger J L,Warming R.Flux vector splitting of the inviscid gas dynamic euqaions with application to finite difference methods[J].Journal of Computational Physics,1981,40:263-293
[19]
Gottlied S,Shu C W.Total variation diminishing Runge-Kutta schemes[J].Mathematics of Computation,1998,67(21):73-85
[20]
Shen Y,Zha G C,Wang B.Improvement of stability and accuracy for weighted essentially nonoscillatory scheme[J].AIAA Journal,2009,47(2):331-344
[21]
Rogallo R S.Numerical experiments in homogeneous turbulence .NSA Technical Memorandum 81315,1981
[22]
Borges R,Carmona M,Costa B,et al.An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J].Journal of Computational Physics,2008,227:3191-3211
[23]
Grube N E,Taylor E M,Martin M P.Direct numerical simulation of shock-wave/isotropic turbulence interaction .AIAA-2009-4165,2009
[24]
Johnsen E,Larsson J,Bhagatwala A V,et al.Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[J].Journal of Computational Physics,2010,229:1213-1237
[25]
Priebe S,Wu M,Martin M P.Direct numerical simulation of a reflected-shock-wave/turbulent-boundary-layer interaction[J].AIAA Journal,2009,47(5):1173-1185
[26]
Martin M P,Taylor E M,Wu M,et al.A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J].Journal of Computational Physics,2006,220:270-289
[27]
Wu M,Martin M P.Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J].AIAA Journal,2007,45(4):879-889
[28]
Suresh A,Huynh H T.Accurate monotonicity-preserving schemes with Runge-Kutta time stepping[J].Journal of Computational Physics,1997,136:83-99
[29]
Borges R,Carmona M,Costa B,et al.An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J].Journal of Computational Physics,2008,227:3191-3211
[30]
Li Z,Jaberi F A.A high-order finite difference method for numerical simulations of supersonic turbulent flows[J].International Journal for Numerical Methods in Fluids,2012,68(6):740-766
[31]
Steger J L,Warming R.Flux vector splitting of the inviscid gas dynamic euqaions with application to finite difference methods[J].Journal of Computational Physics,1981,40:263-293
[32]
Gottlied S,Shu C W.Total variation diminishing Runge-Kutta schemes[J].Mathematics of Computation,1998,67(21):73-85
[33]
Shen Y,Zha G C,Wang B.Improvement of stability and accuracy for weighted essentially nonoscillatory scheme[J].AIAA Journal,2009,47(2):331-344
[34]
Rogallo R S.Numerical experiments in homogeneous turbulence .NSA Technical Memorandum 81315,1981
[35]
Wu M,Martin M P.Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J].AIAA Journal,2007,45(4):879-889
[36]
Suresh A,Huynh H T.Accurate monotonicity-preserving schemes with Runge-Kutta time stepping[J].Journal of Computational Physics,1997,136:83-99
[37]
Li Z,Jaberi F A.A high-order finite difference method for numerical simulations of supersonic turbulent flows[J].International Journal for Numerical Methods in Fluids,2012,68(6):740-766