全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Monotonicity-Preserving激波捕捉格式在湍流大尺度模拟中的评估

, PP. 488-493

Full-Text   Cite this paper   Add to My Lib

Abstract:

对高阶激波捕捉格式的性能进行了系统的测评,重点分析了Suresh和Huynh(1997)所提出的Monotonicity-Preserving格式的性能.结果表明Monotonicity-Preserving格式的性能显著优于原始WENO(WeightedEssentiallyNon-Oscillatory)格式,和改进型WENO格式相当.对格式的分析进一步表明,迎风型的激波捕捉格式在湍流模拟方面的性能都不及高阶中心格式,其原因归结为激波捕捉格式所包含的线性和非线性耗散.因此,改进高阶激波捕捉格式的关键在于同时降低格式的线性耗散和非线性耗散,以提高格式对湍流脉动能量的保持和对小尺度脉动结构的捕捉能力.

References

[1]  Garnier E,Mossi M,Sagaut P,et al.On the use of shock-capturing schemes for large-eddy simulation[J].Journal of Computational Physics,1999,153:273-311
[2]  Lele S K.Compact finite difference schemes with spectral-like resolution[J].Journal of Computational Physics,1992,103:16-43
[3]  Johnsen E,Larsson J,Bhagatwala A V,et al.Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[J].Journal of Computational Physics,2010,229:1213-1237
[4]  Roe P L.Approximate Riemann solvers,parameter vectors and difference schemes[J].Journal of Computational Physics,1981,43:357-372
[5]  Martin M P,Taylor E M,Wu M,et al.A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J].Journal of Computational Physics,2006,220:270-289
[6]  Liou M S,Stenffen C J.A new flux splitting scheme[J].Journal of Computational Physics,1993,107:23-29
[7]  Shu C W,Osher S.Efficient implementation of essentially non-oscillatory shock-capturing schemes[J].Journal of Computational Physics,1988,77:439-471
[8]  Shen Y,Zha G C.Improvement of weighted essentially non-oscillatory schemes near discontinuities .AIAA-2009-3655,2009
[9]  Jiang G S,Shu C W.Efficient implementation of weighted ENO schemes[J].Journal of Computational Physics,1996,126:202-228
[10]  Taylor E M,Wu M,Martin M P.Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence[J].Journal of Computational Physics,2007,223:384-397
[11]  Garnier E,Mossi M,Sagaut P,et al.On the use of shock-capturing schemes for large-eddy simulation[J].Journal of Computational Physics,1999,153:273-311
[12]  Shen Y,Zha G C.Improvement of weighted essentially non-oscillatory schemes near discontinuities .AIAA-2009-3655,2009
[13]  Jammalamadaka A,Li Z,Jaberi F A.Large-eddy simulation of turbulent boundary layer interaction with an oblique shock wave .AIAA-2010-110,2010
[14]  Taylor E M,Wu M,Martin M P.Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence[J].Journal of Computational Physics,2007,223:384-397
[15]  Grube N E,Taylor E M,Martin M P.Direct numerical simulation of shock-wave/isotropic turbulence interaction .AIAA-2009-4165,2009
[16]  Priebe S,Wu M,Martin M P.Direct numerical simulation of a reflected-shock-wave/turbulent-boundary-layer interaction[J].AIAA Journal,2009,47(5):1173-1185
[17]  Jammalamadaka A,Li Z,Jaberi F A.Large-eddy simulation of turbulent boundary layer interaction with an oblique shock wave .AIAA-2010-110,2010
[18]  Steger J L,Warming R.Flux vector splitting of the inviscid gas dynamic euqaions with application to finite difference methods[J].Journal of Computational Physics,1981,40:263-293
[19]  Gottlied S,Shu C W.Total variation diminishing Runge-Kutta schemes[J].Mathematics of Computation,1998,67(21):73-85
[20]  Shen Y,Zha G C,Wang B.Improvement of stability and accuracy for weighted essentially nonoscillatory scheme[J].AIAA Journal,2009,47(2):331-344
[21]  Rogallo R S.Numerical experiments in homogeneous turbulence .NSA Technical Memorandum 81315,1981
[22]  Borges R,Carmona M,Costa B,et al.An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J].Journal of Computational Physics,2008,227:3191-3211
[23]  Grube N E,Taylor E M,Martin M P.Direct numerical simulation of shock-wave/isotropic turbulence interaction .AIAA-2009-4165,2009
[24]  Johnsen E,Larsson J,Bhagatwala A V,et al.Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves[J].Journal of Computational Physics,2010,229:1213-1237
[25]  Priebe S,Wu M,Martin M P.Direct numerical simulation of a reflected-shock-wave/turbulent-boundary-layer interaction[J].AIAA Journal,2009,47(5):1173-1185
[26]  Martin M P,Taylor E M,Wu M,et al.A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J].Journal of Computational Physics,2006,220:270-289
[27]  Wu M,Martin M P.Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J].AIAA Journal,2007,45(4):879-889
[28]  Suresh A,Huynh H T.Accurate monotonicity-preserving schemes with Runge-Kutta time stepping[J].Journal of Computational Physics,1997,136:83-99
[29]  Borges R,Carmona M,Costa B,et al.An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J].Journal of Computational Physics,2008,227:3191-3211
[30]  Li Z,Jaberi F A.A high-order finite difference method for numerical simulations of supersonic turbulent flows[J].International Journal for Numerical Methods in Fluids,2012,68(6):740-766
[31]  Steger J L,Warming R.Flux vector splitting of the inviscid gas dynamic euqaions with application to finite difference methods[J].Journal of Computational Physics,1981,40:263-293
[32]  Gottlied S,Shu C W.Total variation diminishing Runge-Kutta schemes[J].Mathematics of Computation,1998,67(21):73-85
[33]  Shen Y,Zha G C,Wang B.Improvement of stability and accuracy for weighted essentially nonoscillatory scheme[J].AIAA Journal,2009,47(2):331-344
[34]  Rogallo R S.Numerical experiments in homogeneous turbulence .NSA Technical Memorandum 81315,1981
[35]  Wu M,Martin M P.Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp[J].AIAA Journal,2007,45(4):879-889
[36]  Suresh A,Huynh H T.Accurate monotonicity-preserving schemes with Runge-Kutta time stepping[J].Journal of Computational Physics,1997,136:83-99
[37]  Li Z,Jaberi F A.A high-order finite difference method for numerical simulations of supersonic turbulent flows[J].International Journal for Numerical Methods in Fluids,2012,68(6):740-766

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133