全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

辛算法的纠飘研究

, PP. 22-26

Full-Text   Cite this paper   Add to My Lib

Abstract:

辛算法较RK(Runge-Kutta)方法,保持辛结构不变或保持哈密顿系统规律性不变是突出的优点,但点态数值精度并不理想.推导出了三阶、四阶辛算法的漂移量计算公式,通过补偿漂移量就能提高点态数值精度,既保辛结构又保证点态数值高精度,适合于工程应用.建立了分数步对称辛算法(即FSJS算法)的纠漂公式,制定了漂移的约束标准.相关算例的数值结果表明三阶FSJS算法漂移量最小,点态数值精度更高.

References

[1]  Etienne F,Ruth R D.Fourth-order symplectic integration[J].Physica D,1990,43(1):105-117
[2]  李庆扬,王能超,易大义.数值分析[M].北京:清华大学出版社,2008 Li Qingyang,Wang Nengchao,Yi Dayi.Numerical analysis[M].Beijing:Tsinghua University Press,2008(in Chinese)
[3]  冯康,秦孟兆.哈密顿系统的辛几何算法[M].杭州:浙江科学技术出版社,2003 Feng Kang,Qin Mengzhao.Symplectic geometric algorithms for Hamiltonian systems[M].Hangzhou:Zhejiang Science and Technology Press,2003(in Chinese)
[4]  Sun Geng.A simple way constructing symplectic Runger-Kutta methods[J].Jounal of Computational Mathmatics,2000,18(1):61-68
[5]  Etienne F,Ruth R D.Fourth-order symplectic integration[J].Physica D,1990,43(1):105-117
[6]  钟万勰.应用力学的辛数学方法[M].北京:高等教育出版社,2006:79-88 Zhong Wanxie.Symplectic solution methodology in apllied mechnics[M].Beijing:Higher Education Press,2006:79-88(in Chinese)
[7]  Chin S A,Scuro S R.Exact evolution of time-reversible symplectic integrators and their phase errors for the harmonic oscillator[J].Physics Letters A,2005,342:397-403
[8]  Sun Geng.A simple way constructing symplectic Runger-Kutta methods[J].Jounal of Computational Mathmatics,2000,18(1):61-68
[9]  钟万勰.应用力学的辛数学方法[M].北京:高等教育出版社,2006:79-88 Zhong Wanxie.Symplectic solution methodology in apllied mechnics[M].Beijing:Higher Education Press,2006:79-88(in Chinese)
[10]  Grtz Peter.Backward error analysis of symplectic integrators for linear separable Hamiltonian systems[J].Joural of Computational Mathematics,2002,20(5):449-460
[11]  Chin S A,Scuro S R.Exact evolution of time-reversible symplectic integrators and their phase errors for the harmonic oscillator[J].Physics Letters A,2005,342:397-403
[12]  Grtz Peter.Backward error analysis of symplectic integrators for linear separable Hamiltonian systems[J].Joural of Computational Mathematics,2002,20(5):449-460
[13]  邢誉峰,杨蓉.单步辛算法的相位误差分析及修正[J].力学学报,2007,39(5):668-671 Xing Yufeng,Yang Rong.Phase errors and their correction in symplectic implicit single-step algorithm[J].Chinese Journal of Theoretical and Applied Mechanics,2007,39(5):668-671(in Chinese)
[14]  邢誉峰,冯伟.李级数算法和显式辛算法的相位分析[J].计算力学学报,2009,26(2):167-171 Xing Yufeng,Feng Wei.Phase analysis of Lie series algorithm and explicit symplectic algorithm[J].Chinese Journal of Computational Mechanics,2009,26(2):167-171(in Chinese)
[15]  邢誉峰,杨蓉.单步辛算法的相位误差分析及修正[J].力学学报,2007,39(5):668-671 Xing Yufeng,Yang Rong.Phase errors and their correction in symplectic implicit single-step algorithm[J].Chinese Journal of Theoretical and Applied Mechanics,2007,39(5):668-671(in Chinese)
[16]  邢誉峰,冯伟.李级数算法和显式辛算法的相位分析[J].计算力学学报,2009,26(2):167-171 Xing Yufeng,Feng Wei.Phase analysis of Lie series algorithm and explicit symplectic algorithm[J].Chinese Journal of Computational Mechanics,2009,26(2):167-171(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133