全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

BP-AdaBoost模型在光纤陀螺零偏温度补偿中的应用

, PP. 235-239

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对光纤陀螺零偏漂移随温度呈复杂的非线性变化,建立了BP-AdaBoost(BackPropagationneuralnetwork,AdaptiveBoosting)模型对零偏进行补偿,改善了光纤陀螺的零偏稳定性能.同时,研究了模型参数对预测精度的影响,给出了BP神经网络隐含层神经元个数的选择以及AdaBoost模型迭代次数的确定方法.运用AdaBoost算法提升单个BP神经网络的预测能力,提高了集成模型整体的预测精度.对采集的光纤陀螺输出实测数据进行了事后仿真,结果表明,BP-AdaBoost模型相比传统的线性回归模型、混合线性回归模型、单个BP神经网络模型的补偿效果更显著,验证了该模型的有效性,具有重大的工程应用参考价值.

References

[1]  冯丽爽, 南书志, 金靖.光纤陀螺温度建模及补偿技术研究[J].宇航学报, 2006, 27(5):939-942 Feng Lishuang, Nan Shuzhi, Jin Jing.Research on modeling and compensation technology for temperature errors of FOG[J].Journal of Astronautics, 2006, 27(5):939-942(in Chinese)
[2]  韩冰, 林玉荣, 邓正隆.光纤陀螺温度漂移误差的建模与补偿综述[J].中国惯性技术学报, 2009, 17(2):218-224 Han Bing, Lin Yurong, Deng Zhenglong.Overview on modeling and compensation of FOG temperature drift[J].Journal of Chinese Inertial Technology, 2009, 17(2):218-224(in Chinese)
[3]  Xiao Zhi, Ye Shijie, Zhong Bo, et al.BP neural network with rough set for short term load forecasting[J].Expert Systems with Applications, 2009, 36(1):273-279
[4]  Chen Xiyuan. Modeling temperature drift of FOG by improved BP algorithm and by Gauss-Newton algorithm[M].Berlin:Springer, 2004:805-812
[5]  韩力群. 人工神经网络理论:设计及应用[M].北京:化学工业出版社, 2002 Han Liqun.Theoretics, design and application of artificial neutral network[M].Beijing:Chemical Industry Press, 2002(in Chinese)
[6]  Shupe D M.Thermally induced nonreciprocity in the fiber-optic interferometer[J].Applied Optics, 1980, 19(5):654-655
[7]  Hansen L K, Salamon P.Neural network ensembles[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10):993-1001
[8]  冯丽爽, 南书志, 金靖.光纤陀螺温度建模及补偿技术研究[J].宇航学报, 2006, 27(5):939-942 Feng Lishuang, Nan Shuzhi, Jin Jing.Research on modeling and compensation technology for temperature errors of FOG[J].Journal of Astronautics, 2006, 27(5):939-942(in Chinese)
[9]  Freund Y, Schapire R E, Abe N.A short introduction to boosting[J].Journal of Japanese Society for Artificial Intelligence, 1999, 14(5):771-780
[10]  Chen Xiyuan. Modeling temperature drift of FOG by improved BP algorithm and by Gauss-Newton algorithm[M].Berlin:Springer, 2004:805-812
[11]  Islam M, Yao Xin, Murase K.A constructive algorithm for training cooperative neural network ensembles[J].IEEE Transactions on Neural Networks, 2003, 14(4):820-834
[12]  史峰, 王辉, 郁磊, 等.MATLAB智能算法30个案例分析[M].北京:北京航空航天大学出版社, 2012:237-247 Shi Feng, Wang Hui, Yu Lei, et al.Analysis of MATLAB intelligent algorithm in 30 cases[M].Beijing:Beihang University Press, 2012:237-247(in Chinese)
[13]  Schapire R E. The boosting approach to machine learning:an overview[J].Nonlinear Estimation and Classification, 2003: 149- 172
[14]  陈维娜, 曾庆化, 李荣冰, 等.微机械陀螺温度混合线性回归补偿方法[J].中国惯性技术学报, 2012, 20(1):99-103 Chen Weina, Zeng Qinghua, Li Rongbing, et al.Mixed linear regression temperature compensation method for annular-vibrating MEMS gyroscope[J].Journal of Chinese Inertial Technology, 2012, 20(1):99-103(in Chinese)
[15]  Green M, Ekelund U, Edenbrandt L, et al.Exploring new possibilities for case-based explanation of artificial neural network ensembles[J].Neural Networks, 2009, 22(1):75-81
[16]  Qiao Changming, Sun Shuli, Hou Ying.Design of strong classifier based on adaboost M2 and back propagation network[J].Journal of Computational and Theoretical Nanoscience, 2013, 10(12): 2836-2840
[17]  Schapire R E. The boosting approach to machine learning:an overview[J].Nonlinear Estimation and Classification, 2003: 149- 172
[18]  Green M, Ekelund U, Edenbrandt L, et al.Exploring new possibilities for case-based explanation of artificial neural network ensembles[J].Neural Networks, 2009, 22(1):75-81
[19]  申冲, 陈熙源.基于提升小波与灰色神经网络的光纤陀螺振动误差建模[J].中国惯性技术学报, 2011, 19(5):611-614 Shen Chong, Chen Xiyuan.Vibration error modeling of FOG based on lifting wavelet and grey neural network[J].Journal of Chinese Inertial Technology, 2011, 19(5):611-614(in Chinese)
[20]  Qiao Changming, Sun Shuli, Hou Ying.Design of strong classifier based on adaboost M2 and back propagation network[J].Journal of Computational and Theoretical Nanoscience, 2013, 10(12): 2836-2840
[21]  周琪, 秦永元, 成研, 等.光纤陀螺热致漂移误差的模糊补偿[J].中国惯性技术学报, 2010, 18(4):471-475 Zhou Qi, Qin Yongyuan, Cheng Yan, et al.Fuzzy compensation of thermally induced bias drift in fiber optical gyro[J].Journal of Chinese Inertial Technology, 2010, 18(4):471-475(in Chinese)
[22]  Shupe D M.Thermally induced nonreciprocity in the fiber-optic interferometer[J].Applied Optics, 1980, 19(5):654-655
[23]  Hansen L K, Salamon P.Neural network ensembles[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10):993-1001
[24]  Freund Y, Schapire R E, Abe N.A short introduction to boosting[J].Journal of Japanese Society for Artificial Intelligence, 1999, 14(5):771-780
[25]  Islam M, Yao Xin, Murase K.A constructive algorithm for training cooperative neural network ensembles[J].IEEE Transactions on Neural Networks, 2003, 14(4):820-834
[26]  史峰, 王辉, 郁磊, 等.MATLAB智能算法30个案例分析[M].北京:北京航空航天大学出版社, 2012:237-247 Shi Feng, Wang Hui, Yu Lei, et al.Analysis of MATLAB intelligent algorithm in 30 cases[M].Beijing:Beihang University Press, 2012:237-247(in Chinese)
[27]  陈维娜, 曾庆化, 李荣冰, 等.微机械陀螺温度混合线性回归补偿方法[J].中国惯性技术学报, 2012, 20(1):99-103 Chen Weina, Zeng Qinghua, Li Rongbing, et al.Mixed linear regression temperature compensation method for annular-vibrating MEMS gyroscope[J].Journal of Chinese Inertial Technology, 2012, 20(1):99-103(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133