全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

贝叶斯网络结合决策理论的向前多步排故策略

DOI: 10.13700/j.bh.1001-5965.2013.0264, PP. 298-303

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对序贯诊断、维修问题,提出基于贝叶斯网络和决策理论的向前多步排故策略生成算法.通过建立贝叶斯网络排故模型实现了不确定条件下排故知识的高效表达,同时使得推理算法与具体应用无关.采用决策影响图进行排故决策分析,充分利用观测操作间的相关性,选择合理的向前多步观测操作来降低维修盲目性.为了验证所提算法的有效性,采用随机排故策略、决策理论排故策略和理想排故策略的结果进行对比分析.仿真结果表明,所提算法通过增加合理观测操作,减少维修焦点和实际维修操作,使得总排故费用明显低于已有的启发式排故策略.

References

[1]  Adler M,Heeringa B.Approximating optimal binary decision trees[J].Algorithmica,2012,62(3/4):1112-1121
[2]  Adler M,Heeringa B.Approximating optimal binary decision trees[J].Algorithmica,2012,62(3/4):1112-1121
[3]  Hecherman D,Breese J S,Rommelse K.Decision-theoretic troubleshooting[J].Communications of the ACM,1995,38(3): 49-57
[4]  Hecherman D,Breese J S,Rommelse K.Decision-theoretic troubleshooting[J].Communications of the ACM,1995,38(3): 49-57
[5]  Jensen F V,Kjaerulff U,Kristiansen B,et al.The SACSO methodology for troubleshooting complex systems[J].Artificial Intelligence for Engineering Design,Analysis and Manufacturing,2001,15(4):321-333
[6]  Jensen F V,Kjaerulff U,Kristiansen B,et al.The SACSO methodology for troubleshooting complex systems[J].Artificial Intelligence for Engineering Design,Analysis and Manufacturing,2001,15(4):321-333
[7]  Kim L P,Eric H.A graph-theoretic analysis of information value [C]//Proceedings of the 12th annual conference on uncertainty in artificial intelligence (UAI-96).San Francisco:Morgan Kaufmann Publishers,1998:427-435
[8]  Kim L P,Eric H.A graph-theoretic analysis of information value [C]//Proceedings of the 12th annual conference on uncertainty in artificial intelligence (UAI-96).San Francisco:Morgan Kaufmann Publishers,1998:427-435
[9]  Korhan G,Taner B.Troubleshooting using probabilistic networks and value of information[J].International Journal of Approximate Reasoning,2002,29(2):107-133
[10]  Korhan G,Taner B.Troubleshooting using probabilistic networks and value of information[J].International Journal of Approximate Reasoning,2002,29(2):107-133
[11]  Heckerman D,Breese J S,Rommelse K.Troubleshooting and uncertainty[R].MSR-TR-94-07,1994
[12]  Balaram D.Representing uncertainties using Bayesian networks [R].DSTO-TR-0918,1999
[13]  Gustavsson T.Troubleshooting using cost effective algorithms and Bayesian networks[D].Stockholm:Royal Institute of Technology,2007
[14]  Howard R A.From influence to relevance to knowledge[M].New York:John Wiley & Sons Ltd,1990:3-23
[15]  Heckerman D,Breese J S,Rommelse K.Troubleshooting and uncertainty[R].MSR-TR-94-07,1994
[16]  Balaram D.Representing uncertainties using Bayesian networks [R].DSTO-TR-0918,1999
[17]  Gustavsson T.Troubleshooting using cost effective algorithms and Bayesian networks[D].Stockholm:Royal Institute of Technology,2007
[18]  Howard R A.From influence to relevance to knowledge[M].New York:John Wiley & Sons Ltd,1990:3-23

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133