全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

连续谱数据的函数型主成分回归

DOI: 10.13700/j.bh.1001-5965.2013.0409, PP. 792-796

Full-Text   Cite this paper   Add to My Lib

Abstract:

对连续谱数据不做离散化处理,而是将光滑后的连续谱作为连续曲线,进行函数型主成分回归分析,以期获得既可降维又能减少信息损失的回归方程.在此建模过程中,还引入连续谱的导数曲线作为协变量,并给出函数型主成分回归系数的bootstrap置信区间.作为实证研究,对玻璃样品的X射线谱和样品中硅元素含量进行回归分析.研究结果表明,基于函数型主成分的回归分析对响应变量具有较强解释能力,同时其回归系数更加符合数据本身的特点,显示出新方法所具有的优越性与实用价值.

References

[1]  Ramsay J O, Silverman B W.Functional data analysis[M].New York:Springer,1997
[2]  Zhu J. Quantitative electron microscopy X-ray analysis (SEM-EDX) using Monte Carlo simulation and partial least squares regression[D].Antwerpen:University of Antwerp,2005
[3]  Cai T T, Hall P.Prediction in functional linear regression[J].Annals of Statistics,2006,34(5):2159-2179
[4]  James G M, Hastie T J,Sugar C A.Principal component models for sparse functional data[J].Biometrika,2000,87(3):587-602
[5]  Cardot H, Crambes C,Sarda P.Quantile regression when the covariates are functions[J].Journal of Nonparametric Statistics,2005,17(7):841-856
[6]  Hall P, Horowitz J L.Methodology and convergence rates for functional linear regression[J].The Annals of Statistics,2007,35(1):70-91
[7]  Crambes C, Kneip A,Sarda P.Smoothing splines estimators for functional linear regression[J].The Annals of Statistics,2009,37(1):35-72
[8]  Zhu J. Quantitative electron microscopy X-ray analysis (SEM-EDX) using Monte Carlo simulation and partial least squares regression[D].Antwerpen:University of Antwerp,2005
[9]  Serneels S, Croux C,Filzmoser P,et al.Partial robust M-regression[J].Chemometrics and Intelligent Laboratory Systems,2005,79(1):55-64
[10]  Tarachiwin L, Ute K,Kobayashi A,et al.1H NMR based metabolic profiling in the evaluation of Japanese green tea quality[J].Journal of Agricultural and Food Chemistry,2007,55(23):9330-9336
[11]  Lee J E, Lee B J,Chung J O,et al.Geographical and climatic dependencies of green tea (Camellia sinensis) metabolites:a(1)H NMR-based metabolomics study[J].Journal of Agricultural and Food Chemistry,2010,58(19):10582-10589
[12]  Ohno A, Oka K,Sakuma C,et al.Characterization of tea cultivated at four different altitudes using 1H NMR analysis coupled with multivariate statistics[J].Journal of Agricultural and Food Chemistry,2011,59(10):5181-5187
[13]  Ramsay J O, Silverman B W.Functional data analysis[M].New York:Springer,1997
[14]  Cai T T, Hall P.Prediction in functional linear regression[J].Annals of Statistics,2006,34(5):2159-2179
[15]  Filzmoser P, Serneels S,Croux C,et al.Robust multivariate methods:the projection pursuit approach[M].New York:Springer,2006:270-277
[16]  James G M, Hastie T J,Sugar C A.Principal component models for sparse functional data[J].Biometrika,2000,87(3):587-602
[17]  Serneels S, Croux C,Filzmoser P,et al.Partial robust M-regression[J].Chemometrics and Intelligent Laboratory Systems,2005,79(1):55-64
[18]  Cardot H, Crambes C,Sarda P.Quantile regression when the covariates are functions[J].Journal of Nonparametric Statistics,2005,17(7):841-856
[19]  Lee J E, Lee B J,Chung J O,et al.Geographical and climatic dependencies of green tea (Camellia sinensis) metabolites:a(1)H NMR-based metabolomics study[J].Journal of Agricultural and Food Chemistry,2010,58(19):10582-10589
[20]  Hall P, Horowitz J L.Methodology and convergence rates for functional linear regression[J].The Annals of Statistics,2007,35(1):70-91
[21]  Crambes C, Kneip A,Sarda P.Smoothing splines estimators for functional linear regression[J].The Annals of Statistics,2009,37(1):35-72

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133