全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于小波分析的地形多分辨率建模方法

DOI: 10.13700/j.bh.1001-5965.2013.0473, PP. 1121-1126

Full-Text   Cite this paper   Add to My Lib

Abstract:

以提高运算效率和存储效率为目的研究了基于小波的数字高程模型(DEM,DigitalElevationModel)数据的多分辨率建模,根据DEM的数据特点在Mallat多分辨率分析算法的基础上,提出了基于小波分析的DEM数据多分辨率建模算法,对算法实现过程中的小波函数以及边界延拓方式的选取进行了阐述,提出了评价建模精度的相关指标,并通过仿真实验确定了恰当的小波参数.仿真结果表明,小波分析法是实现DEM多分辨率建模的有效方法,同时保证了良好的运算效率和存储效率.该方法可应用于地形的快速可视化、飞行器的动态和静态航路规划等工程应用中.

References

[1]  Moore I D, Grayson R B,Ladson A R.Digital terrain modelling:a review of hydrological,geomorphological,and biological applications[J].Hydrological Processes,1991,5(1):3-30
[2]  Weibel R, Heller M.Digital terrain modelling[M].Oxford:Oxford University Press,1993
[3]  Wang G X, Zhang,Y B,Li J.Research and practice of accuracy evaluation method in DEM[J].Science of Surveying and Mapping,2006,31(3):73-75
[4]  Torrence C, Compo G P.A practical guide to wavelet analysis[J].Bulletin of the American Meteorological Society,1998, 79(1): 61-78
[5]  Wu J, Amaratunga K.Wavelet triangulated irregular networks[J].International Journal of Geographical Information Science,2003,17(3):273-289
[6]  Burrus C S, Gopinath R A,Guo Haitao,et al.Introduction to wavelets and wavelet transforms:a primer[M].Upper Saddle River:Prentice Hall,1998
[7]  Torrence C, Compo G P.A practical guide to wavelet analysis[J].Bulletin of the American Meteorological Society,1998, 79(1): 61-78
[8]  Daubechies I. The wavelet transform,time-frequency localization and signal analysis[J].IEEE Transactions on Information Theory,1990,36(5):961-1005
[9]  黄为,魏迎梅,宋汉辰,等. 基于小波分析的 DEM 数据多分辨率表达研究[J].计算机仿真,2010,27(5):80-83 Huang Wei,Wei Yingmei,Song Hanchen,et al.Multi-resolution representation of DEM based on wavelet analysis[J].Journal of Computer Simulation,2010,27(5):80-83 (in Chinese)
[10]  Yang J S, Zhou L P.Iterative algorithm of wavelet moments method based on the multi-resolution analysis characteristics of wavelet[C]//2011 2nd IEEE International Conference on Microwave Technology and Computational Electromagnetics.Piscataway,NJ:IEEE,2011:462-465
[11]  Gaouda A M, Salama M M A,Sultan M R,et al.Power quality detection and classification using wavelet-multiresolution signal decomposition[J].IEEE Transactions on Power Delivery,1999,14(4):1469-1476
[12]  Mallat S. A wavelet tour of signal processing[M].Salt Lake City:Academic Press,1999
[13]  Mallat S G. A theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7):674-693
[14]  Danovaro E, De Floriani L,Papaleo L,et al.A multi-resolution representation for terrain morphology[C]//Geographic Information Science.Berlin Heidelberg:Springer,2006:33-46
[15]  Danovaro E, De Floriani L,Magillo P,et al.Morphology-driven simplification and multiresolution modeling of terrains[C]//Proceedings of the 11th ACM International Symposium on Advances in Geographic Information Systems.New York:ACM,2003:63-70
[16]  袁礼海,宋建社. 小波变换中的信号边界延拓方法研究[J].计算机应用研究,2006,23(3):25-27 Yuan Lihai,Song Jianshe.Research on signal extended methods in wavelet transform[J].Application Research of Computers,2006,23(3):25-27(in Chinese)
[17]  Herley C. Boundary filters for finite-length signals and time-varying filter banks[J].IEEE Transactions on Circuits and Systems Ⅱ:Analog and Digital Signal Processing,1995,42(2):102-114
[18]  Kharitonenko I, Zhang X,Twelves S.A wavelet transform with point-symmetric extension at tile boundaries[J].IEEE Transactions on Image Processing,2002,11(12):1357-1364

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133