全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

快速Gram-Schmidt回归方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种快速的变量筛选与回归建模方法.该方法将在建模过程中,一方面筛选出对因变量有最佳解释作用的信息;另一方面基于Gram-Schmidt正交变换,识别和检验模型中的冗余变量,以便能够及时和成批量地删除所有冗余信息.仿真分析指出,在自变量数量巨大,同时变量之间的多重相关程度又非常高的情形下,与经典的逐步回归相比,该方法的计算速度更快,建模过程更加简洁有效.

References

[1]  Bj?rck ?.Solving linear least squares problems by Gram-Schmidt orthogonalization[J].BIT,1967,7:1-21
[2]  Chen S,Billings S A,Luo W.Orthogonal least squares methods and their application to non-linear system identification[J].International Journal of Control,1989,50(5):1873-1896
[3]  Cristianini N,Shawe-Taylor J,Lodhi H.Latent semantic kernels[J].Journal of Intelligent Information Systems,2002,18(2/3):127-152
[4]  Bj?rck ?.Solving linear least squares problems by Gram-Schmidt orthogonalization[J].BIT,1967,7:1-21
[5]  Chen S,Billings S A,Luo W.Orthogonal least squares methods and their application to non-linear system identification[J].International Journal of Control,1989,50(5):1873-1896
[6]  Mao K Z.Orthogonal forward selection and backward elimination algorithms for feature subset selection[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2004,34(1): 629-634
[7]  He Yunhui.Modified generalized discriminant analysis using kernel Gram-Schmidt orthogonalization in difference space for face recognition[C]//Proceedings-2009 2nd International Workshop on Knowledge Discovery and Data Mining,WKKD 2009.Piscataway,NJ:IEEE Computer Society,2009:36-39
[8]  Cristianini N,Shawe-Taylor J,Lodhi H.Latent semantic kernels[J].Journal of Intelligent Information Systems,2002,18(2/3):127-152
[9]  Su Chaoton, Hsiao Yuhsiang.Multiclass MTS for simultaneous feature selection and classification[C]//IEEE Transactions on Knowledge and Data Engineering.Piscataway,NJ:IEEE Computer Society,2009:192-205
[10]  Bian Yiwen. A Gram-Schmidt process based approach for improving DEA discrimination in the presence of large dimensionality of data set[J].Expert Systems with Applications:An International Journal,2012,39(3):3793-3799
[11]  Mao K Z.Orthogonal forward selection and backward elimination algorithms for feature subset selection[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B:Cybernetics,2004,34(1): 629-634
[12]  王惠文,陈梅玲,Gilbert Saporta.Gram-Schmidt回归及在刀具磨损预报中的应用[J].北京航空航天大学学报,2008,34(6): 729-733
[13]  Wang Huiwen,Chen Meiling,Gilbert Saporta.Gram-Schmidt regression and application in cutting tool abrasion prediction[J].Journal of Beijing University of Aeronautics and Astronautics,2008,34(6):729-733(in Chinese)
[14]  He Yunhui.Modified generalized discriminant analysis using kernel Gram-Schmidt orthogonalization in difference space for face recognition[C]//Proceedings-2009 2nd International Workshop on Knowledge Discovery and Data Mining,WKKD 2009.Piscataway,NJ:IEEE Computer Society,2009:36-39
[15]  Wang Huiwen,Yi Bin,Ye Ming.Unsupervised dimension reduction method based on Gram-Schmidt process[C]//Proceedings of IASC 2008.Tokyo:Japanese Society of Computational Statistics,2008:1659-1667
[16]  王惠文,仪彬,叶明.基于主基底分析的变量筛选[J].北京航空航天大学学报,2008,34(11):1288-1291
[17]  Wang Huiwen,Yi Bin,Ye Ming.Variable selection based on principal basis analysis[J].Journal of Beijing University of Aeronautics and Astronautics,2008,34(11):1288-1291(in Chinese)
[18]  Su Chaoton, Hsiao Yuhsiang.Multiclass MTS for simultaneous feature selection and classification[C]//IEEE Transactions on Knowledge and Data Engineering.Piscataway,NJ:IEEE Computer Society,2009:192-205
[19]  Bian Yiwen. A Gram-Schmidt process based approach for improving DEA discrimination in the presence of large dimensionality of data set[J].Expert Systems with Applications:An International Journal,2012,39(3):3793-3799
[20]  王惠文,陈梅玲,Gilbert Saporta.Gram-Schmidt回归及在刀具磨损预报中的应用[J].北京航空航天大学学报,2008,34(6): 729-733
[21]  Wang Huiwen,Chen Meiling,Gilbert Saporta.Gram-Schmidt regression and application in cutting tool abrasion prediction[J].Journal of Beijing University of Aeronautics and Astronautics,2008,34(6):729-733(in Chinese)
[22]  Wang Huiwen,Yi Bin,Ye Ming.Unsupervised dimension reduction method based on Gram-Schmidt process[C]//Proceedings of IASC 2008.Tokyo:Japanese Society of Computational Statistics,2008:1659-1667
[23]  王惠文,仪彬,叶明.基于主基底分析的变量筛选[J].北京航空航天大学学报,2008,34(11):1288-1291
[24]  Wang Huiwen,Yi Bin,Ye Ming.Variable selection based on principal basis analysis[J].Journal of Beijing University of Aeronautics and Astronautics,2008,34(11):1288-1291(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133