全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于实测数据与遥感影像的鄱阳湖水体光学分类

DOI: 10.11870/cjlyzyyhj201505009, PP. 773-780

Keywords: 鄱阳湖,反射率,水体,分类

Full-Text   Cite this paper   Add to My Lib

Abstract:

鄱阳湖是我国最大的淡水湖泊,受季风气候影响其水体空间动态变化大,且广阔的水域内部差异也较大,因此湖泊水体光学分类对反演湖泊水质参数及监测湖泊水质有着重要意义。以鄱阳湖为研究区,根据实测的反射光谱数据形态特征将鄱阳湖的水体分为4类:特别浑浊、中等浑浊、轻度浑浊和清水区,并分别对每一类结果进行分析。考虑到实测光谱数据局限于湖区某些离散点的情况,不足以观测整个鄱阳湖区域内所有不同水体类型的空间分布和动态变化,从而将该方法利用于遥感影像以便观测整个湖区水体类型。在LandsatOLI遥感影像上任意选取采样点,根据其波谱形态建立基于斜率的分类算法,并应用决策树模型把鄱阳湖水体分为5类:特别浑浊、中等浑浊、轻度浑浊、清水区和特别清澈,影像的分类结果图与实地考察的情况相一致。把模型应用于其他时期的遥感影像进行鄱阳湖水体分类,对比影像的分类结果图表明:2002、2005和2009年鄱阳湖区分别出现3种、4种和4种不同的水体类型,且水体浑浊范围呈现出动态变化。研究表明水体光学类型分类可以更好的监测湖泊水质的时空变异性。

References

[1]  MOREL A, PRIEUR L.Analysis of variations in ocean color[J].Limnology and Oceanography, 1977, 22(4):709-722.
[2]  DOERFFER R, SORENSEN K, AIKEN J.MERIS potential for coastal zones applications[J].International Journal of Remote Sensing, 1999, 20(9):1809-1818.
[3]  PULLIAINEN J, KALLIO K, ELOHEIMO S, et al.A semioperative approach to lake water quality retrieval from remote sensing data[J].The Science of the Total Environment, 2001, 268(3):79-93.
[4]  IOCCG.Remote sensing ocean colour in coastal and other optically-complex waters[R]//SATHYENDRANATH S.Reports of the International Ocean-Colour Coordinating Croup, No.3, IOCCG, Dartmouth, Canada, 2000.
[5]  BERTRAND L, HUBERT L.Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea[J].Remote Sensing of Environment, 2007, 110(1):45-58.
[6]  MOORE T S, CAMPBELL J W, FENG H.A fuzzy logic classification scheme for selecting and blending satellite ocean color algorithms[J].IEEE Transaction on Geoscience and Remote Sensing, 2001, 39:1764-1776.
[7]  FENG H, CAMPBELL J W, DOWELL M D, et al.Modeling spectral reflectance of optically complex waters using bio-optical measurements from Tokyo Bay[J].Remote Sensing of Environment, 2005, 99:232-243.
[8]  LUBAC B, LOISEL H.Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea[J].Remote Sensing of Environment, 2007, 110(1):45-58.
[9]  TILSTONE G H, ANGEL-BENAVIDES I M, PRADHAN Y, et al.An assessment of chlorophyll-a algorithms available for SeaWiFS in coastal and open areas of the Bay of Bengal and Arabian Sea[J].Remote Sensing of Environment, 2011, 115(9):2277-2291.
[10]  HOMMERSOM A, WERNAND M R, PETERS S, et al.Spectra of a shallow sea-unmixing for class identification and monitoring of coastal waters[J].Ocean Dynamics, 2011, 61(4), 463-480.
[11]  LE C F, LI Y M, ZHA Y, et al.Remote estimation of chlorophyll a in optically complex waters based on optical classification[J].Remote Sensing of Environment, 2011, 115(2):725-737.
[12]  MéLIN F, VANTREPOTTE M, CLERICI D, et al.Multi-sensor satellite time series of optical properties and chlorophyll a concentration in the Adriatic Sea[J].Progress in Oceanography, 2011, 91(3):229-244.
[13]  邬国锋, 崔丽娟, 纪伟涛, 等.基于时间序列MODIS影像的鄱阳湖丰水期悬浮泥沙浓度反演及变化[J].湖泊科学, 2009, 21(2):288-297.
[14]  唐军武, 田国良, 汪小勇, 等.水体光谱测量与分析I:水面以上测量法[J].遥感学报, 2004, 8(1):37-44.
[15]  SONG C., WOODCOCK C E, SETO K C, et al.Classification and change detection using landsat TM data:when and how to correct atmospheric effects[J].Remote Sensing of Environment, 2001, 75(2):230-244.
[16]  SMITH R C.BAKER K S.Optical properties of the clearest natural waters(200-800 nm)[J].Applied Optics, 1981, 20(2):177-184.
[17]  刘志国, 周云轩, 沈芳, 等.河口水体泥沙浓度的水面光谱统计模式分析[J].水利学报, 2007, 38(7):799-805.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133