全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于神经网络和D-S证据理论的汽车电控系统故障融合诊断

, PP. 141-145

Keywords: 汽车工程,诊断精度,融合,电控系统,神经网络,证据理论

Full-Text   Cite this paper   Add to My Lib

Abstract:

在分析D-S证据理论和神经网络理论各自特点的的基础之上,提出将这两种方法进行融合,并对电控汽车车载自诊断系统的诊断数据流参数进行处理和分析。该融合方法是将各个独立的低维神经网络的输出值处理后作为辨识框架上命题的基本可信度,经过证据理论的再次融合后得到最终的诊断结果。通过电控发动机典型故障的实例分析表明,该方法能够克服单一神经网络诊断中数据源包含信息的不全面性以及模糊性等局限性,并使得证据理论的基本可信度分配不再完全依赖专家的主观化赋值,同时可以充分利用各种故障的冗余和互补信息,从而使得汽车电控系统的故障的识别能力得到提高。

References

[1]  姜万录,李冲祥.神经网络和证据理论融合的故障诊断方法研究
[2]  [J].中国机械工程,2004,15(9):760-764.JIANG Wanlu,LI Chongyang.On Fault Diagnosis Method of Fusing ANN and Evidence Theory
[3]  [J].China Mechanical Engineering,2004,15(9):760-764.
[4]  嵇斗,王向军.基于D-S证据理论和BP算法的直流电机故障诊断研究
[5]  [J].Proceedings of the CSEE.2006,26(3):119-123.
[6]  廖明燕.基于神经网络和证据理论集成的钻井过程状态监测与故障诊断
[7]  [J].中国石油大学学报:自然科学版,2007,31(5):136-139.LIAO Mingyan.Drilling state Monitoring and Fault Diagnosis Based on Integrating Neural Network and Evidence Theory
[8]  [J].Journal of China University of Petroleum:Natural Sci-ence Edition,2007,31(5):136-139.
[9]  曹一波,谢小鹏.基于D-S证据理论和集成神经网络的磨粒识别
[10]  [J].润滑与密封,2006,177(5):64-68.CAO Yibo,XIE Xiaopeng.Wear Particles Classification Based on Dempster-shafter Evidential Reasoning and Integrated Neural Network
[11]  [J].Chinese Journal of Ship Research,2008,3(1):55-57.
[12]  刘立峰,李郁侠,王伟.基于遗传神经网络和证据理论融合的水电机组振动故障诊断研究
[13]  [J].沈阳理工大学学报,2007,26(5):33-36.FAN Xiaojing,HU Yulan.Target Identification Based on Neural Network and D-S Evidence Theory
[14]  [J].Transactions of Shenyang Ligong University,2007,26(5):33-36.
[15]  赵海洋,王金东,刘树林,等.基于神经网络和支持向量机的复合故障诊断技术
[16]  [J].流体机械,2008,36(1):39-44.ZHAO Haiyang,WANG Jindong,LIU Shulin,et al.Compound Fault Diagnosis Technique Based on Artificial Neural Network and Support Vector Machine
[17]  [J].Chinese Journal of Aeronautics,2006,27(6):1014-1017.
[18]  [J].船电技术,2007,27(4):204-206.JI Dou,WANG Xiangjun.Fault Diagnosis of DC Machine Based on D-S Evidential Theory and BP Network
[19]  [J].Marine Electric & Electronic Engineering,2007,27(4):204-206.
[20]  廖瑞金,廖玉祥,杨丽君,等.多神经网络与证据理论融合的变压器故障综合诊断方法研究
[21]  [J].中国电机工程学报,2006,26(3):119-123.LIAO Ruijin,LIAO Yuxiang,YANG Lijun,et al.Study on Synthetic Diagnosis Method of Transformer Fault Using Multineural Network and Evidence Theory
[22]  [J].Lubrication Enginering,2006,177(5):64-68.
[23]  孙雅囡.基于模糊神经网络和D-S证据理论的故障诊断方法研究
[24]  [J].中国舰船研究,2008,3(1):55-57.SUN Yanan.Fault Diagnosis Study Based on Neural Networkand D-S Evidence Theory
[25]  [J].水力发电学报,2008,27(5):163-167.LIU Lifeng,LI Yuxia,WANG Wei.Fault Diagnosis Study Based on Neural Network and D-S Evidence Theory
[26]  [J].Journal of Hydroelectric Engineering,2008,27(5):163-167.
[27]  范晓静,胡玉兰.基于神经网络与D-S证据理论的目标识别
[28]  [J].Fluid Machinery,2008,36(1):39-44.
[29]  陈恬,孙健围,郝英.基于神经网络和证据融合理论的航空发动机气路故障诊断
[30]  [J].航空学报,2006,27(6):1014-1017.CHEN Tian,SUN Jianguo,HAO Ying.Neural Network and Dempster-Shafter theory Based Fault Diagnosis for Aero Engine Gas Path

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133