全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于神经网络技术的斜拉桥损伤分步识别方法

, PP. 70-75

Keywords: 桥梁工程,损伤分步识别,神经网络,斜拉桥,拉索损伤,主梁损伤

Full-Text   Cite this paper   Add to My Lib

Abstract:

结合神经网络技术进行了斜拉桥损伤分步识别的系统性研究,提出了具体的斜拉桥损伤分步识别过程,给出了每一识别步骤中适当的损伤识别参数,可实现斜拉桥主要构件即拉索和主梁中损伤的有效识别。采用概率神经网络确定损伤构件的类型,采用径向基函数(RBF)网络实现损伤的定位定量分析。针对润扬大桥斜拉桥的损伤模拟分析表明将测试数据进行平均计算可以大大降低噪声对于概率神经网络识别结果的影响;噪声水平对2个径向基函数网络的损伤位置和损伤程度的识别能力方面的影响较小。采用不同的神经网络分阶段实现大跨斜拉桥的损伤识别,不仅提高了损伤识别的效率和准确性,而且增强了损伤识别方法在实际结构中应用的可行性。

References

[1]  [J].China Civil Engineering Journal,2003,36(8):74-78.
[2]  NI Y Q,JIANG S F,KO J M.Application of Adaptive Probabilistic Neural Network to Damage Detection of Tsing Ma Bridge
[3]  张治国,张谢东.基于模态分析理论和神经网络的斜拉桥拉索损伤识别研究
[4]  [J].中南公路工程,2007,32(2):67-72.ZHANG Zhiguo,ZHANG Xiedong.Research on Damage Identification in Stay Cables of Cable-stayed Bridge Based on Modal Analysis Theory and Neural Network
[5]  [J].Central South Highway Engineering,2007,32(2):67-72.
[6]  孙宗光,倪一清,高赞明.基于新奇检测技术的桥梁结构损伤预警方法
[7]  [J].公路交通科技,2007,24(10):72-75.SUN Zongguang,NI Yiqing,GAO Zanming.Damage Alarming of Bridge Structures Based on Novelty Detection Technique
[8]  [J].Journal of Highway and Transportation Research and Development,2007,24(10):72-75.
[9]  [J].公路交通科技,2008,25(8):57-60.SUN Zongguang,WU Xuenan,SU Jian.Damage Locating for Cable-stayed Bridge Based on Stay Cable Tension Measurement
[10]  [J].Journal of Highway and Transportation Research and Development,2008,25(8):57-60.
[11]  杜永峰,张冬兵.曲率模态和神经网络在损伤识别中的应用
[12]  [J].公路交通科技,2007,24(11):77-80.DU Yongfeng,ZHANG Dongbing.Application of Curvature Mode and Neural Network for Damage Identification
[13]  [J].Journal of Highway and Transportation Research and Development,2007,24(11):77-80.
[14]  张育智,李乔,单德山.用于结构损伤位置识别的两种神经网络性能比较
[15]  [J].公路交通科技,2007,24(12):69-74.ZHANG Yuzhi,U Qiao,SHAN Deshan.Performance Comparison of Two Types of Neural Networks Used in Structural Damage Location Identification
[16]  [J].Journal of Highway and Transportation Research and Development,2007,24(12):69-74.
[17]  谢峻,江见鲸,韩大建,等.大跨度斜拉桥损伤识别的三步法
[18]  [J].工程力学,2006,23(8):53-56.XIE Jun,JIANG Jianjing,HAN Dajian,et al.Three-step Method for Damage Detection of Long Span Cable-stayed Bridges
[19]  [J].桥梁建设,2004,159(5):19-22.ZHAO Ling,LI Aiqun.Identification of Damages in Stay Cables of Long-span Cable-stayed Bridges
[20]  LEE J J,LEE J W,YI J H,et al.Neural Networks-based Damage Detection for Bridges Considering Errors in Baseline Finite Element Models
[21]  [J].Journal of Sound and Vibration,2005,280(3/5):555-578.
[22]  姜绍飞,刘明,倪一清,等.大跨悬索桥损伤定位的自适应概率神经网络研究
[23]  [J].土木工程学报,2003,36(8):74-78.JIANG Shaofei,LIU Ming,NI Yiqing,et al.Research on Adaptive Probabilistic Neural Network for Damage Localization of a Long-span Suspension Bridge
[24]  [C]//Proceedings of the International Society for Optical Engineering,USA:Proceeding of SPIE,2001(4337):347-356.
[25]  张清华,李乔,唐亮.基于损伤敏感指标的斜拉桥结构损伤定位研究
[26]  [J].工程力学,2008,25(5):163-169.ZHANG Qinghua,LI Qiao,TANG Liang.Study on Structural Damage Location Identification by Damage Indices for Cablestayed Bridges
[27]  [J].Engineering Mechanics,2008,25(5):163-169.
[28]  孙宗光,伍雪南,苏健.基于斜拉索张力测定的斜拉桥健康诊断
[29]  [J].Engineering Mechanics,2006,23(8):53-56.
[30]  赵玲,李爱群.大跨斜拉桥的拉索损伤识别
[31]  [J].Bridge Construction,2004,159(5):19-22.
[32]  ZHAO Ling,LI Aiqun.Detection of Damage in Cables of Cable-stayed Bridge Using Modal Curvature and Cable Force Change
[33]  [C]//Proceedings of the 3rd International Conference on Earthquake Engineering.Nanjing:Intellectual Property Publishing House,2004(9):944-948.
[34]  赵玲.基于神经网络技术的大跨斜拉桥结构损伤分步识别方法研究
[35]  [D].南京:东南大学,2008.ZHAO Ling.Investigation on Neural Network Technology Based Multiple-step Identification of Structural Damage for Long Span Cable-stayed Bridge
[36]  [D].Nanjing:Southeast University,2008.
[37]  汪永兰.拉索损伤对斜拉桥结构性能影响研究
[38]  [D].南京:东南大学,2004.WANG Yonglan.Investigation on the Effect of Cable Damage on Structural Characteristics of Cable-stayed Bridge
[39]  [D].Nanjing:Southeast University,2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133