全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于支持向量机的物流配送中心选址决策

Keywords: 配送中心,选址,支持向量机,支持向量回归机

Full-Text   Cite this paper   Add to My Lib

Abstract:

建立了选址决策的模糊评价矩阵,应用支持向量机方法(SVM)来处理数据,进行物流配送中心的选址决策。支持向量回归机根据所提供的数据,通过学习和训练,找出输入与输出的内在联系,从而求取问题的解,而不是根据经验知识,因而具有自适应功能,能弱化指标权重确定中人为因素的影响。与传统方法相比较,有较好的泛化能力,能较客观地对多个选址方案的优劣进行评价。最后,引用实例说明利用支持向量回归机完成评价工作的全部步骤。

References

[1]  [M].北京:机械工业出版社,2002:385-387.
[2]  BURGES C J C.A tutorial on support machines for pattern recognition
[3]  [J].Knowledge Discovery and Data Mining,1998,2(2):81-89.
[4]  TAY F E H,CAO L J.Modified support vector machines in financial time series forecasting
[5]  [J].Neurocomputing,2002,48:847-861.
[6]  [J].IEEE Transactions on Neural Networks,2001,12 (4):809-821.
[7]  [M].北京:科学出版社,2004.
[8]  陆华,杨家其.模糊排序及启发式算法在物流中心选址中的应用
[9]  BARZILAY O,BRAILOVSKY V L.On domain knowledge and feature selection using a support vector machine
[10]  [J].Pattern recognition Letters,1999,20:475-484.
[11]  罗纳德·H·巴罗,王晓东,胡瑞娟.企业物流管理-供应链的规划、组织和控制
[12]  V APNIK V.The Nature of Statistical Learning Theory
[13]  [M].New York:Springer Verlag,1995.
[14]  SUYKENS J A K.Optimal control by least squares support vector machines
[15]  [J].Neural Networks,2001,14 (1):23-25.
[16]  VAN GESTEL T,SUYKENS J A K,et al.Financial time series prediction using least squares support vector machines with in the evidence framework
[17]  邓乃扬,田英杰.数据挖掘中的新方法--支持向量机
[18]  徐杰,郑凯,田源.物流中心选址的影响因素分析及案例
[19]  [J].北方交通大学学报,2001,23(5):80-82.
[20]  [J].武汉理工大学学报,2002,26(3):389-392.
[21]  WILLIAM ATKINSON.Location logistics
[22]  [J].Plants,Sites and Parks,2004,30(4):8.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133