全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

乳化沥青冷再生混合料动静模量相关性

Keywords: 道路工程,乳化沥青冷再生混合料,时温等效原理,抗压回弹模量,动态模量,主曲线

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究乳化沥青冷再生混合料动静态特性之间的相关性,采用UTM-25和MTS-810试验机进行了4种不同类型乳化沥青冷再生混合料的动态模量和抗压回弹模量试验。基于时温等效原理,通过非线性最小二乘法拟合得到再生混合料动态模量主曲线,开展了动态模量关键影响因素温度、频率、围压、水泥添加剂和新集料的方差分析。结合参考温度15℃和20℃时的动态模量主曲线,分析了乳化沥青冷再生混合料抗压回弹模量与动态模量主曲线频率之间的对应关系。结果表明规划求解函数可确定乳化沥青冷再生混合料的动态模量主曲线。温度和频率对动态模量影响显著,而围压影响不显著,水泥和新集料对动态模量在低频(高温)条件下影响显著,而在高频(低温)条件下影响不显著。乳化沥青冷再生混合料15℃抗压回弹模量对应的动态模量主曲线频率为0.01~0.04Hz,20℃抗压回弹模量对应的频率为0.01~0.5Hz。

References

[1]  姚岢. 沥青混合料动态性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.YAO Ke. Research on Dynamic Properties of Asphalt Mixtures [D]. Harbin: Harbin Institute of Technology, 2009.
[2]  CLYNE T R, LI X, MARASTEANU M O, et al. Dynamic Modulus and Resilient Modulus of Mn/DOT Asphalt Mixtures [R]. St. Paul, Minnesota: Minnesota Department of Transportation, 2003.
[3]  BROWN E R, PROWELL B, COOLEY A, et al. Evaluation of Rutting Performance on the 2000 NCAT Test Track [J]. Journal of the Association of Asphalt Paving Technologists, 2004, 73: 287-336.
[4]  SHU Xiang, HUANG Baoshan. MicromechanicsBased Dynamic Modulus Prediction of Polymeric Asphalt Concrete Mixtures [J]. Composites: Part B Engineering, 2008, 39(4): 704-713.
[5]  LI Guoqiang, Li Yongqi, METCALF J B, et al. Elastic Modulus Prediction of Asphalt Concrete [J]. Journal of Materials in Civil Engineering, 1999, 11(3): 236-241.
[6]  THOMAS T W, MAY R W. MechanisticEmpirical Design Guide Modeling of Asphalt Emulsion Full Depth Reclamation Mixes [C] //The Transportation Research Board 2007 Annual Meeting. Washington, D. C.: TRB, 2007.
[7]  CROSS S A, JAKATIMATH Y. Evaluation of Cold Inplace Recycling for Rehabilitation of Transverse Cracking on US 412 (Final Report) [R]. Stillwater, Oklahoma: Oklahoma State University, 2007.
[8]  Applied Research Associates. Guide for MechanisticEmpirical Design, National Cooperative Highway Research Program 137A [C] //The Transportation Research Board 2004 Annual Meeting. Washington, D. C.: TRB, 2004.
[9]  CROSS S A. Determination of Ndesign for CIR Mixtures Using the Superpave Gyratory Compactor (FHWA No. DTFH6198X00095/RMRC Research Project No.15 Final Report) [R]. Lawrence, Kansas: University of Kansas, 2002.
[10]  赵延庆, 薛成, 黄荣华. 沥青混合料抗压回弹模量与动态模量的比较分析[J]. 武汉理工大学学报, 2007, 29(12): 105-111.ZHAO Yan-qing, XUE Cheng, HUANG Rong-hua. Comparison of Compressive Resilient Modulus and Dynamic Modulus of Asphalt Mixtures [J]. Journal of Wuhan University of Technology, 2007, 29(12): 105-111.
[11]  WITCZAK M W, BARI J. Development of a Master Curve (E) Database for Lime Modified Asphaltic Mixtures (Final Report) [R]. Arizona: Arizona State University, 2004.
[12]  BARI J, WITCZAK M W. Development of a New Revised Version of the Witczak E* Predictive Model for Hot Mix Asphalt Mixtures [J]. Journal of the Association of Asphalt Paving Technologists, 2006, 75: 381-423.
[13]  ZHU Haoran, SUN Lun, YANG Jun, et al. Developing Master Curves and Predicting Dynamic Modulus of PolymerModified Asphalt Mixtures [J]. Journal of Materials in Civil Engineering, 2011, 23(2): 131-137.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133