全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

混凝土弯斜梁桥双向规则性参数判别和抗震近似计算方法

, PP. 72-81

Keywords: 桥梁工程,抗震近似计算方法,地震反应分析,曲线梁桥,斜交箱梁桥,规则桥梁,规则性

Full-Text   Cite this paper   Add to My Lib

Abstract:

从抗震设计反应谱理论角度,通过改变地震动的输入方向,引入抗侧力桥墩的相对墩底剪力比参数来判别混凝土弯斜梁桥的横桥向和纵桥向规则性,探讨了圆心角、曲线半径、跨径、跨宽比和跨高比等结构参数变化对混凝土曲线梁桥双向规则性地震行为的影响规律,以及斜交角、跨径、跨宽比和支承刚度等主要结构参数变化对混凝土斜交箱梁桥双向规则性地震行为的影响规律,由此建立了混凝土曲线梁桥和斜交箱梁桥双向规则性参数化的划分标准。并通过回归分析,提出了E1水平地震作用下适用于严格规则和近似规则混凝土弯斜梁桥地震力的近似计算方法。算例验证表明,抗震近似计算方法结果具有较高的精度。

References

[1]  JTG/T B02-01—2008,公路桥梁抗震设计细则 [S].JTG/TB 02-01—2008,Guidelines for Seismic Design ofHighway Bridges [S].
[2]  CJJ166—2011, 城市桥梁抗震设计规范 [S].CJJ166—2011,Code for Seismic Design of Urban Bridges[S].
[3]  Japan Road Association. Specifications for HighwayBridges: Part V Seismic Design[S] , 2002.
[4]  NZS 4203: 1992,Bridge Manual Section 5: EarthquakeResistant Design [S].
[5]  prEN 1998- 2 Eurocode 8, Design Provision forEarthquake Resistance of Structures Part 2: Bridges[S].
[6]  AASHTO. Specifications for LRFD Seismic Bridge Design[S] , 2007.
[7]  Caltrans. Seismic Design Criteria Version 6 [S] , 2010.
[8]  CLOUGH R W,PENZIEN J. Dynamics of Structures[M]. New York: McGraw Hill Book Co. ,1993.
[9]  CHOPRA A K. Dynamics of Structures [M]. NewJersey: Prince Hall, 2001.
[10]  WIISON E L. Three-dimensional Static and DynamicsAnalysis of Structures: A Physical Approach withEmphasis on Earthquake Engineering Computer andStructures [R]. Berkeley, California: University ofCalifornia at Berkeley, 2002.
[11]  CALVI G M. Influence of Regularity on Response of RCBridges,Seismic Design and Retrofitting of ReinforcedConcrete Bridges [R]. Queenstown, New Zealand:University of Canterbury, 1994: 83-94.
[12]  CALVI G M,PAVESE A. Conceptual Design of IsolationSystems for Bridge Structures [J]. Journal of EarthquakeEngineering, 1997,1 (1): 193 193-218.
[13]  CHOPRA A K. Modal Pushover Analysis Procedure toEstimate Seismic Demands for Buildings: Theory andPreliminary Evaluation,Report No. PEER- 2001/03[R]. Berkley: University of California at Berkley, 2001.
[14]  陈亮. 规则桥梁划分标准与简化分析方法 [D]. 上海: 同济大学,2005.CHEN Liang. Regular Bridge Partitioning Criterion andSimplified Analysis Method [D]. Shanghai: TongjiUniversity, 2005.
[15]  ISAKOVIC T. Regularity Indices for Bridge Structures[C]∥ Proceedings of the 12th World Conference onEarthquake Engineering. Auckland, New Zealand:University of Auckland, 2000: 1725-1732.
[16]  FAJAR P,GASPERSIC P. The N2 Method for the SeismicDamage Analysis of RC Buildings [J]. EarthquakeEngineering and Structure Dynamics,1996: 25 (1),23-67.
[17]  FAJAR P,FISCHINGER M. N2 Method for NonlinearSeismic Analysis of Regular Buildings [C] ∥ Proceedingsof the 9th World Conference of Earthquake Engineering.Tokyo: Maruzen, 1989: 111-116.
[18]  金菊,王淑涛. 中小跨径曲线梁桥半径变化对结构变形的影响分析 [J]. 河北工业大学学报,2007,36(4): 110-113.JIN Ju,WANG Shu-tao. Effect of Radius Variation onDeformation of Construction of Short and Medium SpanCurved Beam Bridge [J]. Journal of Hebei University ofTechnology,2007,36 (4): 110-113.
[19]  孙颖. 混凝土曲线梁桥简化抗震设计方法研究 [D].福州: 福州大学,2010: 21-31.SSUN Ying. Research on Simplified Seismic DesignMethod for Concrete Curved Bridges [D]. Fuzhou:Fuzhou University, 2010: 21-31.
[20]  卓秋林. 公路简支斜梁桥地震反应分析 [D]. 福州:福州大学,2004.ZHUO Qiu-lin. Highway Simply Supported Skew GirderBridge Seismic Response Analysis [D]. Fuzhou: FuzhouUniversity,2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133