全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于稀疏矩阵处理技术的自适应交通网络模型

, PP. 138-141

Keywords: 交通工程,区域交通,自适应网络,共轭梯度法,稀疏矩阵,超松弛迭代法

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了解决区域交通活动场模拟分析过程中的稀疏矩阵求解问题,本文针对自适应交通网络模型中的稀疏矩阵的特性,提出了两种稀疏矩阵处理技术。采用基于矩阵分裂的超松弛迭代法和以共轭向量系为搜索方向的共轭梯度法,使得模型中的稀疏矩阵求解问题顺利解决。经过计算得到,在得到同样精度的结果时,两种算法的收敛速度是不一样的,共轭梯度法有着明显的优势。

References

[1]  杨绍祺,谈根林.稀疏矩阵
[2]  [M].北京:高等教育出版社,1985.YANG Shaoqi, TAN Genlin. Sparse Matrix
[3]  [M].Beijing:Higher Education Press,1985.
[4]  G.H.戈卢布,C.F.范洛恩.矩阵计算
[5]  [M].北京:科学出版社,2001.GOLUB G H,VANLOAN C F.Matrix Computation
[6]  [M].Beijing:Science Press,2001.
[7]  吴建平,王正华.带门槛不完全Cholesky分解存在的问题与改进
[8]  [J].数值计算与计算机应用,2003,9(3):207-214WU Jianping, WANG Zhenghua. Problems and Improvements to the Incomplete Cholesky Decomposition with Thresholds
[9]  [J].Journal of Numerical Methods and Computer Applications,2003,9 (3):207-214.
[10]  沈焕峰,李平湘,张良培.不完全乔莱斯基分解预优共轭梯度的模型
[11]  [J].计算机工程,2006,32 (17):15-18.SHEN Huanfeng, LI Pingxiang, ZHANG Liangpei.Incomplete Cholesky Decomposition Conjugate Gradient Model
[12]  [J]. Computer Engineering,2006,32 (17):15-18.
[13]  曹志浩.变分迭代法
[14]  [M].北京:科学出版社,2005.CAO Zhihao.Variational Iteration Method
[15]  [M].Beijing:Science Press,2005.
[16]  刘长学.超大规模稀疏矩阵计算方法
[17]  [M].上海:上海科学技术出版社,1991.LIU Changxue. Algorithm for Extra-large Scale Sparse Matrix
[18]  [M].Shanghai:Shanghai Scientific and Technical Publishers,1991.
[19]  林绍忠.用预处理共轭梯度法求解有限元方程组及程序设计
[20]  [J].河海大学学报,1998,26 (3):112-115.LIN Shaozhong.Application of Preconditioned Conjugated Gradient Method to Finite Element Equations and Programme Design
[21]  [J]. Journal of Hohai University,1998,26 (3):112-115.
[22]  李庆扬,王能超,易大义.数值分析
[23]  [M].武汉:华中科技大学出版社,1986.LI Qingyang, WANG Nengchao, YI Dayi. Numerical Analysis
[24]  [M]. Wuhan:Huazhong University of Science and Technology Press,1986.
[25]  OLIKER L,LI Xiaoye,HUSBANDS P,et al.Effects of Ordering Strategies and Programming Paradigms on Sparse Matrix Computations
[26]  [J]. SIAM Review,2002,44(3):373-393.
[27]  TERO A,RYO K,NAKAGAKI T.A Mathematical Model for Adaptive Transport Network in Path Finding by True slime Mold
[28]  [J].Journal of Theoretical Biology,2007,244:553-564.
[29]  TERO A.Rules for Biologically Inspired Adaptive Network Design
[30]  [J].Science,2010,327:439-442.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133