全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于驾驶行为共性建模的速度-密度关系研究

, PP. 116-120

Keywords: 交通工程,速度-密度关系,数值模拟,速度陡降,回波速度,驾驶行为

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了能对车流的速度-密度关系进行准确描述及对现实交通中的速度陡降现象进行解释,首先提取出驾驶行为共性(1)驾驶员利用与渴望车速对应的心理车头间距来判断前方的交通流状况;(2)驾驶行为中加速或减速行为是驾驶员根据前车传递的交通信息和自己对此信息的时间和空间理解来进行的,并且以回波速度向后传递。此后,在对这些驾驶共性进行数学描述的基础上建立一种以车头间距和驾驶员反应时间等为参数的回波速度和速度-密度关系模型,通过分析模型中驾驶员反应时间这个参数在加速和减速时的不同选择对速度陡降现象进行解释。最后,使用MATLAB7.0软件数值模拟计算回波速度和速度-密度关系,计算结果表明回波速度最大值与相关文献给出的值吻合,速度-密度关系曲线与观测的数据吻合,驾驶员反应时间变化是产生速度陡降现象的根本原因。

References

[1]  ZHANG H M.Driver Memory,Traffic Viscosity and a Viscous Vehicular Trattlc Flow Model
[2]  [J].Transportation Research,Part B,2003,37(1):27-41.
[3]  NAGATANI T.Tragic Behavior in a Mixture of Different Vehides
[4]  [J].Physica A,2000,284:405-420.
[5]  NAGATANI T.Multiple Jamming Transitions in Traffic Flow
[6]  [J].Physica A,2000,290:501-511.
[7]  NAGAI R,ONOUCHI T,NAGATANI T.Phase Separation and Evolution of One Pulse Jam in Traffic
[8]  [J].Physica A,2005,354:571-581.
[9]  KERNER B S.Synchronized Flow as a New Traffic Phase and Related Problems for Traffic Flow Modelling
[10]  [J].Mathematical and Computer Modelling,2002,35:581-508.
[11]  KERNER B S,KLENOVl S L.Probahilistic Breakdown Phe nomenon at On-ramp Bottlenecks in Three-phase Tragic Theoty:Congestion Nucleation in Spatially Now-Homogeneous Traffic
[12]  TREIBER M,KESTING A,HELSTING D.Delays,Inaccuracies and Anticipation in Micwscopic Traffic Models
[13]  [J].Physica A,2004.340:636-646.
[14]  SIMON P M,NAGEL K.Simplified Cellular Automaton Model for City Traffic
[15]  [J].Physical Review E,1998,58(2):1 286-1 295.
[16]  NING W.A New Approach for Modeling of Fundamental Diagrams
[17]  BANDO M,HASEBE K,NAKAYAMA A,et al.Dynamical Model of Traffic Congestion and Numerical Simulation
[18]  [J].Physical Review E,1995,5l(2):1 035-1 042.
[19]  TOMER E,SAFONOV L,HAVLIN S.Presence of Many Stable Nonhomogeneons States in an Inertial Car-following Model
[20]  [J].Physical Review Letters,2000,84(2):382-385.
[21]  GIPPS P G.A Behavioral Car Following Model for Computer Simulation
[22]  [J].Transportation Research,Part B,1981,15(2):105-111.
[23]  [J].Physical Review E,1998,58(5):5 429-5 435.
[24]  BRACKSTONE M,SULTAN B,MCDONALD M.Motorway Driver Behaviour:Studies on Car Following
[25]  [J].Transportation Research,Part B,1999,33(1):1-23.
[26]  ZHANG H M,KIM T.A Car-following Theory for Multiphase Vehicular Traffic Flow
[27]  [J].Transportation Research,Part B,2005,39(5):385-399.
[28]  [J].Phyaica A,2006,364:473-492.
[29]  [J].Physica A,2006,360:71-88.
[30]  HELBING D,HENNECKE A,SHVETSON V,et al.Master:Macroscopic Simulation Based on a Gas-kinetic,Non-local Traffic Model
[31]  [J].Transporation Research,Part B,2001,35(2):183-211.
[32]  LEVINE E,GRAY G Z L,MUKAMEL D.Traffic Jams and Ordering far from Thermal Equnibt4m
[33]  NAGEL K.Particle Hopping Models and Traffic Flow Theories
[34]  [J].Physjcal Review E,1996,53(5):4 655-4 672.
[35]  [J].Transportation Research,Part A,2002,36(10):867-884
[36]  DAVIS L c.Analysis of Optimal Velocity Model with Explicit Delay
[37]  [J].Physical Review E,2002,66(3):038101-1-038101-2.
[38]  DAVIS L C.Modifications of the Optimal Velocity Traffic Model to Include Delay Due to Driver
[39]  [J].Physica A,2003,319:557-567.
[40]  BANDO M,HASEBE K,NAKANISHI K,et al.Analysis of Optimal Velocity Model with Explicit DeLay
[41]  [J].Transportation Research,Part F,2002,5(1):31-46.
[42]  WINDOVERJ R.Empirical Studies of the Dynamic Features of Freeway Traffic
[43]  [D].Doctoral Dissertation,University of Califonia at Berkeley,1988.
[44]  CASTILLO J M D.Propagation of Perturbations in Dense Traffic Flow:a Model and Its Implications
[45]  [J].Transportation Research,Part B,2001,35(4):367-389.
[46]  ZHANG H M.A Mathematical Theory of Traffic Hysteresis

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133