全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

城市道路交通量短时预测的GSVMR模型

, PP. 134-138

Keywords: 交通工程,短时交通量预测,支持向量机,遗传算法,回归

Full-Text   Cite this paper   Add to My Lib

Abstract:

在分析现有城市道路交通量短时预测方法缺陷的基础上,针对目前广泛采用的基于经验风险最小化的BP网络易于陷入局部最优解等缺点,结合遗传算法容易寻找全局最优解与支持向量机回归法具有结构风险最小化的特点,提出了将两种算法相结合的GSVMR预测模型,该模型同时具有结构风险最小和容易寻找最优解的双重特性,并对某城市四车道主干道路8∶00~8∶45的交通量进行了预测,结果表明用该模型进行城市道路交通量短时预测所得结果误差较小,依此验证了用GSVMR模型进行城市道路交通量短时预测的有效性。

References

[1]  任福田,刘小明,荣建,等.交通工程学
[2]  [J].中国公路学报,2005,18(1):85-89.ZHENG Wei-zhong,SHI Qi-xin.Study of Short-term Freeway Traffic Flow Prediction Based on BAYESIAN Combined Model
[3]  史其信,郑为中.道路网短期交通流预测方法比较
[4]  [J].交通运输工程学报,2004,4(4):68-72.SHI Qi-xin,ZHENG Wei-zhong.Short-term Traffic Flow Prediction Methods Comparison of Road Networks
[5]  [J].Neurocomputing,2003,55:307-319.
[6]  LIU Han,LIU Ding,ZHENG Gang,et al.Research on Natural Gas Load Forecasting Based on Support Vector Regression
[7]  [J].WCICA,2004,4(15-19):3591-3595.
[8]  MOHANDESM,HALAWANI T,REHMAN S.Support Vector Machines for Wind Speed Prediction
[9]  [J].Renewable Energy,2004,29:939-947.
[10]  赵洪波.基于遗传算法的进化支持向量机研究
[11]  [J].绍兴文理学院学报,2004,24(9):25-28.ZHAO Hong-bo.A Study on Evolutionary Support Vector Machine Based on Genetic Algorithm
[12]  [J].计算机工程与应用,2005,32(19):44-46.DING Lei,TAO Liang.New Learning Algorithm of the Improved SVM for Regression
[13]  [M].北京:人民交通出版社,2003.REN Fu-tian,LIU Xiao-ming,RONG Jian,et al.Traffic Engineering
[14]  [M].Beijing:China Communications Press,2003.
[15]  郑为中,史其信.基于贝叶斯组合模型的短期交通量预测研究
[16]  [J].China Journal of Highway and Transport,2005,18(1):85-89.
[17]  [J].Journal of Traffic and Transportation Engineering,2004,4(4):68-72.
[18]  张益,陈淑燕,王炜.短时交通量时间序列智能复合预测方法概述
[19]  [J].公路交通科技,2006,23(8):139-142.ZHANG Yi,CHEN Shu-yan,WANG Wei.Survey of Traffic Volume Time Series Intelligent Compound Forecasting Methods
[20]  [J].Journal of Highway and Transportation Research and Development,2006,23(8):139-142.
[21]  李元诚,方廷健,于尔铿.短期负荷预测的支持向量机方法研究
[22]  [J].中国电机工程学报,2003,23(6):55-59.LI Yuan-cheng,FANG Ting-jian,YU Er-keng.Study of Support Vector Machines for Short-termLoad Forecasting
[23]  [J].Proceedings of the Chinese Society for Electrical Engineering,2003,23(6):55-59.
[24]  KIM KJ.Financial Time Series Forecasting Using Support Vector Machines
[25]  [J].Journal of Shaoxing University,2004,24(9):25-28.
[26]  丁蕾,陶亮.改进的用于回归估计的支持向量机学习算法
[27]  [J].Computer Engineering and Applications,2005,32(19):44-46.
[28]  PAI P F,HONG W C.Forecasting Regional Electricity Load based on Recurrent Support Vector Machines with Genetic Algorithms
[29]  [J].Electric Power Systems Research,2005,74(3):417-425.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133