全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于电化学模型的电动公交车续驶里程预测及分析

, PP. 153-158

Keywords: 汽车工程,续驶里程,电化学模型,电动公交车,车辆调度

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文提出了一种基于锂离子电池电化学模型的电动公交车续驶里程预测方法,并以某款锂离子电池电动公交车为例,预测了该车在美国UDDS、欧洲EUDC和日本1015行驶工况下的续驶里程,同时还分析了电池组温度和电池模块数量对车辆行驶一定路程所必需的最低荷电状态SOCL的影响。结果表明随着电池组温度的降低,车辆在上述工况下所需的SOCL值均逐渐增大,并且在低温下增大的幅度更为明显随着电池模块数量的增加,车辆所需的SOCL值会逐渐减小,并且在低温下减小的幅度相对更大。因此,在制定和调整电动公交车的运输计划时,可参考本文提出的方法对电动公交车的续驶里程进行预测在电动公交车动力电池组温度或电池模块数量发生变化时,也可采用本文提出的方法为车辆所需SOCL值的调整提供技术依据。

References

[1]  陈全世,林成涛.电动汽车用电池性能模型研究综述 [J].汽车技术,2005 (3):1一5. CHEN Quan-shi,LIN Cheng-tao. Summarization of Studies on Performance Models of Batteries for Electric Vehicle[J]. Automobile Technology, 2005 (3):1一5.
[2]  徐贵宝,王震坡,张承宁.电动汽车续驶里程能量计算 和影响因素分析[J].兵工学报,2005 (2) ; 53 -56. XU Gui-bao, WANG Zhen-po, ZHANG Cheng-ning. Analysis of the Energy Computation and Influence Factors of Electric Vehicle Range[J] . Acta Armamentarll , 2005 (2):53一56.
[3]  姬芬竹,高峰,吴志新.电动车传动系和整车质量对续 驶里程的影响[J].机械科学与技术,2006 , 25 ( 7 ): 840一843. JI Fen-zhu, GAO Feng, WU Zhi-xin. Influence of the Powertrain aml Gross Mass of Electric Vehicles on Driving Ranges[J] . Mechanical Science and Technology ,2006, 25 (7): 840一R43.
[4]  李军求,姚利民,孙逢春,等.电传动履带车辆动力电 池放电特性及续驶里程预测[J].兵工学报,2006 , 27 (2):193一197. LI Jun-qiu, YAO Li-min, SUN Feng-chun, et al. Discharge Characteristic and Range Forecasting of Traction Battery in Electric Drive Tracked Vehicle[J].Acta Armamentarll, 2006,27 (2):193一197.
[5]  刘剑,谷中丽,戴旭文.补偿模糊神经网络对电动汽车续 驶里程的应用[J]汽车工艺与材料,2002 (6):36一38. LIU Jian, GU Zhong-li,DAI Xu-wen. Application of Compensatory Fuzzy Neural Net in Electric Vehicle Mileage[J].Automobile Technology&Material, 2002 (6):36一38.
[6]  YE Y H,SHI Y X,CAI N S, et al. Electro-thermal Modeling and Experimental Validation for Lithium Ion Battery[J] . Journal of Power Sources,2012,199 (1): 227一238.
[7]  CAI L, WHITE R E. Mathematical Modeling of a Lithium Ion Battery with Thermal Effects in COMSOL Inc. Multiphysics (MP) Software[J].Journal of Power Sources,2011,196 (14):5985一5989.
[8]  FANG W F, KWON O J,WANG C Y. Electrochemical- thermal Modeling of Automotive Li Ion Batteries and Experimental Validation Using a Three-electrode Cell [J]. International Journal of Energy Research, 2010,34 (2): 107一115.
[9]  ZHU C,LI X H,SONG L J. Development of a Theoretically Based Thermal Model for Lithium Ion Battery Pack[J].Journal of Power Sources,2013,223 (1): 155一164.
[10]  NEWMAN J S, TOBIAS C W. Theoretical Analysis of Current Distribution in Porous Electrodes [J].Journal of the Electrochemical Society, 1962,109(12):1183-1191
[11]  NEWMAN J S, TIEDEMANN W. Porous Electrode Theory with Battery Applications [J]. AIChE Journal, 1975,21 (1):25一41.
[12]  MARTINEZ-ROSAS E, VASQUEZ-MEDRANO R, FLORES-TLACUAHUAC A. Modeling and Simulation of Lithium-ion Batteries [J].Computers and Chemical Engineering, 2011,35 (9):1937一1948.
[13]  LEE S I, KIM Y S, CHUN H S. Modeling on Lithium Insertion of Porous Carbon Electrodes [J] . Electrochemica Acta, 2002,47 (7):1055一1067.
[14]  ZHU C,LU J Y, LI X H. Electrochemical and Thermal Coupled Modeling of High Power Lithium Ion Battery
[15]  [C ] // Proceedings of the 12th COTA International Conference of Transportation Professionals. Beijing: American Society of Civil Engineers,2012.
[16]  SMITH K, WANG C Y. Power and Thermal Characterization of a Lithium-ion Battery pack for Hybrid- electric Vehicles [J].Journal of Power Sources,2006, 160(1):662一673.
[17]  DOYLE M,NEWMAN J, GOZDZ A S, et al. Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells [J].Journal of the Electrochemical Society, 1996,143 (6):1890一1903.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133