全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

路面裂缝图像自动识别算法综述

, PP. 19-25

Keywords: 道路工程,自动识别算法,图像处理,路面裂缝,图像分割,边缘检测,裂缝种子,有监督学习

Full-Text   Cite this paper   Add to My Lib

Abstract:

路面裂缝自动检测对于路面养护管理、路面性能评价与预测、路面材料和结构设计具有重要的实用价值,但快速、准确、全面且稳定地识别路面裂缝一直是个难题。为此,对路面裂缝自动检测研究现状进行综述,包括以图像增强和去噪为目的的预处理方法,基于阈值分割、边缘检测和种子生长的空间域识别算法,以小波变换为代表的频域识别算法,基于有监督学习的识别算法及其他裂缝识别方法;指出既有裂缝识别算法存在易受光照和油污等因素的影响、裂缝识别图像连续性差和识别速度和精度较低等不足。最后,提出综合考虑边界和区域特征消除纹理和噪声干扰、基于局部和全局信息设计优化识别算法和基于三维图像进行裂缝识别等研究展望,为裂缝自动识别算法的改进提供参考。

References

[1]  GAVILáN M,BALCONES D,MARCOS O,et al. AdaptiveRoad Crack Detection System by Pavement Classification[J]. Sensors,2011,11 (10): 9628-9657.
[2]  李晋惠. 公路路面裂缝类病害图像处理算法研究[J].计算机工程与应用,2003,39 (35): 212-213,232.LI Jin-hui. Image Processing Algorithm for Detecting thePavement Crack Diseases [J]. Computer Engineering andApplications,2003,39 (35): 212-213,232.
[3]  孙朝云,褚燕利,樊瑶,等. 基于VC + + 路面裂缝图像处理系统研究[J]. 计算机应用与软件,2009,26(8): 82-85.SUN Zhao-yun,CHU Yan-li,FAN Yao,et al. PavementCrack Image Processing System Research Based on VC + +[J]. Computer Applications and Software,2009,26(8): 82-85.
[4]  何靓俊. 基于图像处理的沥青路面裂缝检测系统研究[D]. 西安: 长安大学,2008.HE Liang-jun. Study on the Detection System of AsphaltPavement Crack Based on Image Processing [D]. Xi'an:Chang'an University,2008.
[5]  朱其刚. 基于像素特征的路面裂缝图像自适应滤噪[J]. 山东师范大学学报: 自然科学版,2005,20(3): 37-39.ZHU Qi-gang. An Adaptive Filtering Algorithm for RoadCrack Image Based on Pixel Characteristics [J]. Journalof Shandong Normal University: Natural Science,2005,20 (3): 37-39.
[6]  马常霞. 基于图像分析的路面裂缝检测的关键技术研究[D]. 南京: 南京理工大学,2011.MA Chang-xia. Researeh on the Key Technologies ofPavement Crack Detection Based on Image Analysis [D].Nanjing: Nanjing University of Science & Technology,2011.
[7]  张娟,沙爱民,孙朝云,等. 路面裂缝自动识别的图像增强技术[J]. 中外公路,2009,29 (4): 301-305.ZHANG Juan,SHA Ai-min,SUN Zhao-yun,et al. ImageEnhancement Technique in Automatic Identification ofPavement Crack [J]. Journal of China & ForeignHighway,2009,29 (4): 301-305.
[8]  梁世庆,孙波成,邱延峻. 数学形态学路面裂缝识别算法研究[J]. 路基工程,2010 (1): 44-46.LIANG Shi-qing, SUN Bo-cheng, QIU Yan-jun.Algorithm Research for Pavement Crack Recognition Basedon Mathematic Morphology [J]. Subgrade Engineering,2010 (1): 44-46.
[9]  SY N T,AVILA M,BEGOT S,et al. Detection of Defectsin Road Surface by a Vision System [C] ∥Proceedingsof the 14th IEEE Mediterranean ElectrotechnicalConference. Ajaccio: Institute of Electrical andElectronics Engineers Inc,2008: 847-851.
[10]  KOUTSOPOULOS H N,DOWNEY A B. Primitive-basedClassification of Pavement Cracking Images [J]. Journalof Transportation Engineering,1993,119 (3): 402-418.
[11]  CHENG H D,CHEN J R. A Novel Fuzzy Logic Approachto Pavement Distress Detection [C] ∥ Proceedings ofSPIE - The International Society for Optical Engineering.Scottsdale: SPIE,1996: 97-108.
[12]  KASEKO M S,RITCHIE S G. A Neural Network-basedMethodology for Pavement Crack Detection and Classification [J]. Transportation Research Part C:Emerging Technologies,1993,1 (4): 275-291.
[13]  CHOU J,O'NEIL W A,CHENG H. Pavement DistressEvaluation Using Fuzzying Logic and Moment Invariants[J]. Transportation Research Record, 1995, 1505:144-148.
[14]  高建贞,任明武,杨静宇. -种快速实用的灰度校正算法[J]. 中国图像图形学报,2002,7 (6): 548-552.GAO Jian-zhen, REN Ming-wu, YANG Jing-yu. APractical and Fast Method for Non-uniform IlluminationCorrection [J]. Journal of Image and Graphics,2002,7(6): 548-552.
[15]  邹勤. 低信噪比路面裂缝增强与提取方法研究[D].武汉: 武汉大学,2012.ZOU Qin. Study on Enhancement and Extraction of Low-SNR Pavement Cracks [D]. Wuhan: Wuhan University,2012.
[16]  OTSU N. A Threshold Selection Method from Gray-levelHistograms [J]. IEEE Transactions on Systems,Man andCybernetics,1979,9 (1): 62-66.
[17]  CANNY J. A Computational Approach to Edge Detection[J]. Pattern Analysis and Machine Intelligence,1986,8(6): 679-698.
[18]  NGUYEM T S,AVILA M,STEPHANE B. AutomaticDetection and Classification of Defect on Road PavementUsing Anisotropy Measure [C] ∥ The 17th EuropeanSignal Processing Conference. Glasgow:
[19]  [s. n. ] ,2009:617-621.
[20]  王茜,彭中,刘莉. -种基于自适应阈值的图像分割算法[J]. 北京理工大学学报,2003,23 (4): 521-524.WANG Qian,PENG Zhong,LIU Li. An Adaptive Methodof Image Segmentation [J]. Journal of Beijing Institute ofTechnology,2003,23 (4): 521-524.
[21]  张娟,沙爱民,孙朝云,等. 基于相位编组法的路面裂缝自动识别[J]. 中国公路学报,2008,21 (2): 39-42.ZHANG Juan, SHA Ai-min, SUN Zhao-yun, et al.Pavement Crack Automatic Recognition Based on PhasegroupingMethod
[22]  [J ]. China Journal of Highway Transport,2008,21 (2): 39-42.
[23]  李刚,贺昱曜. 多方位结构元素路面裂缝图像边缘检测算法[J]. 计算机工程与应用,2010,46 (1): 224-226.LI Gang,HE Yu-yao. Edge Detection for Road CrackImage with Multidirection Morphological StructuringElements [J]. Computer Engineering and Applications,2010,46 (1): 224-226.
[24]  王华,朱宁,王祁. 应用计盒维数方法的路面裂缝图像分割[J]. 哈尔滨工业大学学报,2007,39 (1): 142-144.WANG Hua,ZHU Ning,WANG Qi. Segmentation of Pavement Cracks Using Differential Box-counting Approach[J] Journal of Harbin Institute of Technology,2007,39(1): 142-144.
[25]  REN Xiao-feng, MALIK J. Learning a ClassificationModel for Segmentation [C] ∥Proceedings of the IEEEInternational Conference on Computer Vision. Nice,France: Institute of Electrical and Electronics EngineersInc,2003: 10-17.
[26]  MARTIN D R,FOWLKES C C,MALIK J. Learning toDetect Natural Image Boundaries Using Local Brightness,Color,and Texture Cues [J]. IEEE Transactions onPattern Analysis and Machine Intelligence, 2004, 26(5): 530-549.
[27]  STAHL J S, WANG S. Edge Grouping CombiningBoundary and Region Information [J]. IEEE Transactionson Image Processing,2007,16 (10): 2590-2606.
[28]  ZHU Q,PAYNE M,RIORDAN V. Edge Linking by aDirectional Potential Function (DPF) [J]. Image andVision Computing,1996,14 (1): 59-70.
[29]  FARAG A A,DELP E J. Edge Linking by SequentialSearch [J]. Pattern Recognition, 1995, 28 (5):611-633.
[30]  WANG Song,KUBOTA T,SISKIND J M,et al. SalientClosed Boundary Extraction with Ratio Contour [J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2005,27 (4): 546-561.
[31]  HUANG Ya-xiong,XU Bu-gao. Automatic Inspection ofPavement Cracking Distress [J]. Journal of ElectronicImaging,2006,15 (1): 13-17.
[32]  朱平哲,黎蔚. 基于主动生长的断裂裂缝块的连接方法[J]. 计算机应用,2011,31 (12): 3382-3384.ZHU Ping-zhe, LI Wei. Linking Algorithm of Discontinuity Crack Block Based on Autonomous EdgeGrowing [J]. Journal of Computer Applications,2011,31 (12): 3382-3384.
[33]  LI Qing-quan, ZOU Qin, LIU Xiang-long. PavementCrack Classification via Spatial Distribution Features [J].EURASIP Journal on Advances in Signal Processing,2011,2011: 649-675.
[34]  SUN C,VALLOTTON P. Priority-Based Path Growing forLinear Feature Detection [C] ∥Digital Image ComputingTechniques and Applications,9th Biennial Conference ofthe Australian Pattern Recognition Society. Glenelg:IEEE,2007: 360-365.
[35]  YAMAGUCHI T, HASHIMOTO S. Automated CrackDetection for Concrete Surface Image Using PercolationModel and Edge Information [C] ∥IECON 2006-32ndAnnual Conference on IEEE Industrial Electronics. Paris:IEEE,2006: 3355-3360.
[36]  DELANES P,BARBA D. A Markov Random Field forRectilinear Structure Extraction in Pavement DistressImage Analysis [C] ∥IEEE International Conference onImage Processing. Washington, D. C. : IEEE, 1995:446-449.
[37]  唐磊,赵春霞,王鸿南,等. 基于图像三维地形模型的路面裂缝自动检测[J]. 计算机工程,2008,34 (5):20-21,38.TANG Lei,ZHAO Chun-xia,WANG Hong-nan,et al.Automated Pavement Crack Detection Based on Image 3DTerrain Model [J]. Computer Engineering,2008,34(5): 20-21,38.
[38]  TSAI Y C, KAUL V, MERSEREAU R M. CriticalAssessment of Pavement Distress Segmentation Methods[J]. Journal of Transportation Engineering,2010,136(1): 11-19.
[39]  ZHOU Jian,HUANG Pei-sen,CHIANG F P. WaveletbasedPavement Distress Classification
[40]  [ J ].Transportation Research Record: Journal of theTransportation Research Board,2005,1940: 89-98.
[41]  SHAN Tan,WANG Shuang,ZHANG Xiang-rong,et al.Automatic Image Enhancement Driven by Evolution Basedon Ridgelet Frame in the Presence of Noise [C] ∥The3rd European Conference on Applications of EvolutionaryComputing. Lausanne: Springer Berlin Heidelberg,2005:304-313.
[42]  SHU Zhi-biao,GUO Yan-qing. Algorithm on ContourletDomain in Detection of Road Cracks for Pavement Images[J]. Journal of Algorithms & Computational Technology,2013,7 (1): 15-26.
[43]  WEI N,ZHAO X,DOU X Y,et al. Beamlet TransformBased Pavement Image Crack Detection [C] ∥InternationalConference on Intelligent Computation Technology andAutomation. Changsha: IEEE,2010: 881-883.
[44]  BRAY J,VERMA B,LI X,et al. A Neural Network BasedTechnique for Automatic Classification of Road Cracks[C] ∥ Procedings of the International Joint Conference onNeural Networks. Vancouver: IEEE,2006: 907-912.
[45]  XU Guo-ai,MA Jian-li,LIU Fan-fan,et al. AutomaticRecognition of Pavement Surface Crack Based on BPNeural Network [C] ∥ Proceedings of the 2008International Conference on Computer and ElectricalEngineering. Phuket: IEEE,2008: 19-22.
[46]  SAAR T,TALVIK O. Automatic Asphalt Pavement CrackDetection and Classification Using Neural Networks [C] ∥Proceedings of the 12th Biennial Baltic ElectronicsConference. Tallinn: IEEE,2010: 345-348.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133