全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

锚网喷联合支护隧道稳定可靠度的拟蒙特卡洛分析

Keywords: 隧道工程,锚喷网联合支护,拟蒙特卡洛法,低偏差抽样,可靠度

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于地下结构力学围岩与支护相互作用原理及剪切滑移理论,建立了软质围岩隧道在锚网喷联合支护条件下的稳定功能函数。针对该功能函数的隐式特征,研究了基于超立方体中低偏点集和重要抽样方法的拟蒙特卡洛求解方法,并相应给出了明晰的分析操作程序,构建出完整的隧道锚喷网联合支护下稳定可靠度拟蒙特卡洛分析方法。避免经典蒙特卡洛求解时的效率低、计算费用高的缺陷。最后通过工程实例对比,表明了所提方法具有较高的精度和效率,展示了其实用性和可行性。

References

[1]  贡金鑫.工程结构可靠度计算方法[M].大连:大连理工大学出版社,2003.GONG Jinxin.Computational Methods for Reliability of Engineering Structure[M].Dalian:Dalian University of Technology Press,2003.
[2]  苏永华,李翔,徐能雄,等.锚喷衬砌隧道结构稳定可靠度计算[J].土木工程学报,2011,44 (3):113-119.SU Yonghua,LI Xiang,XU Nengxiong,et al.Calculation of Reliability for the Structural Stability of Tunnel Linings Consisting of Rockbolts and Shotcrete[J].China Civil Engineering Journal,2011,44 (3):113-119.
[3]  苏永华,张鹏,李翔.基于Kriging算法的隧道衬砌稳定可靠度分析[J].公路交通科技,2009,26 (12):62-68.SU Yonghua,ZHANG Peng,LI Xiang.Reliability Analysis of Tunnel Lining Stability Based on Kriging Algorithm[J].Journal of Highway and Transportation Research and Development,2009,26 (12):62-68.
[4]  蒋友宝,冯健,孟少平.极限状态响应面法分析结构可靠度的研究[J].公路交通科技,2006,23 (11):52-55.JIANG Youbao,FENG Jian,MENG Shaoping.Research on Analysis of Structural Reliability Based on Limit State Response Surface Method[J].Journal of Highway and Transportation Research and Development,2006,23(11):52-55.
[5]  张峰,吕震宙.可靠度灵敏性分析的自适应重要抽样方法[J].工程力学,2008,25 (4):80-84.ZHANG Feng,L(U) Zhenzhou.An Adaptive Importance Sampling Method for Estimation of Reliability Sensitivity[J].Engineering Mechanics,2008,25 (4):80-84.
[6]  李亚东.重要抽样模拟及其在结构可靠度计算中的应用[J].西南交通大学学报,1992 (4):105-111.LI Yadong.Importance Sampling Simulation and Its Applications in Structural Reliability Computations[J].Journal of Southwest Jiaotong University,1992(4):105-111.
[7]  肖玲梅,于涛,余红星,等.自适应蒙特卡洛方法计算海水淡化堆非能动系统物理过程失效概率[J].核动力工程,2010,31 (1):61-64.XIAO Lingmei,YU Tao,YU Hongxing,et al.Calculation of Physical Process Failure Probability of Passive Systems in NDR by Adaptive Monte Carlo Method[J].Nuclear Power Engineering,2010,31 (1):61-64.
[8]  苏成,李鹏飞,韩大建.基于Neumann展开响应面技术的重要抽样蒙特卡洛法[J].工程力学,2009,26(12):1-5.SU Cheng,LI Pengfei,HAN Dajian.Importance Sampling Monte-Carlo Method Based on Neumann Expansion Response Surface Techniques[J]. Engineering Mechanics,2009,26 (12):1-5.
[9]  李志业,曾艳华.地下结构设计原理与方法[M].成都:西南交通大学出版社,2003.LI Zhiye,ZENG Yanhua.The Design Principle and Method of Underground Structure[M].Chengdou:Southwest Jiaotong University Press,2003.
[10]  李世辉.隧道支护设计新论[M].北京:科学出版社,1999.LI Shihui.New Theory of Tunnel Supporting Design[M].Beijing:Science Press,1999.
[11]  戴鸿哲,王伟.结构可靠性分析的拟蒙特卡洛方法[J].航空学报,2009,30 (4):666-671.DAI Hongzhe,WANG Wei.Quasi-Monte Carlo Method for Structural Reliability Analysis[J].Acta Aeronautica et Astronautica Sinica,2009,30 (4):666-671.
[12]  NIEDERREITER H.Random Number Generation and Quasi-Monte Carlo Method[M].Philadelphia:SIAM,1992.
[13]  HUA L G,WANG Y.Applications of Number Theory to Numerical Analysis[M].Berlin:Springer,1981.
[14]  GUO Dong,WANG Xiaodong,QMC Filtering in Nonlinear Dynamic Systems[J].IEEE Transactions on Signal Processing,2006,54 (6):2087-2098.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133