全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
煤炭工程  2013 

煤炭地下气化场覆岩运动规律的数值模拟研究

, PP. 79-82

Keywords: 地下气化,燃空区,覆岩运动,三带

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据煤炭地下气化场实际地质结构,考虑高温对燃空区上覆岩层物理力学特性的影响,采用RFPA建立模型分析燃空区覆岩结构运动及“三带”分布规律,结果表明(1)燃空区上覆岩层出现明显的“三带”特征,冒落带高度约为8m,裂隙带高度发育到煤层顶板上方约25m处,裂隙带之上至地表之间的岩层为弯曲下沉带。燃空区老顶关键层初次来压步距约为42m,周期来压步距约为12m。(2)随着燃空区扩展,燃烧煤壁前方形成剪应力集中区,由下向上发展成拱形分布;煤壁前方形成应力增高区,煤层支承压力增高系数为2.0~2.3;厚覆岩层支承压力集中系数亦逐渐增大,当燃空区扩展到厚顶板的极限破断跨距时,厚顶板上的载荷发生跳跃式变化,超前支承压力快速增大,后因冒落矸石的支撑作用,关键层上的载荷在燃空区范围内有所降低。(3)随着燃空区扩展,上覆岩层的移动范围及下沉量逐步增大;老顶关键层出现初次破断及周期来压后,厚硬岩层下沉量明显增大;同一时刻距离煤层越近的顶板,其垂直位移越大;上覆岩层位移下沉曲线基本呈对称分布。

References

[1]  Sateesh Daggupati, Ramesh N. Mandapati, Sanjay M. Mahajani, Anuradda Ganesh, D.K. Mathur, R.K. Sharma, Preeti Aghalayam. Laboratory studies on combustion cavity growth in lignite coal blocks in the context of underground coal gasification. Energy,2010,35:2374-2386.
[2]  Evans U J, Thompson W T.煤地下气化过程中温度和非弹性特性对顶板塌落和地表沉陷的影响[J].矿业译丛,1985,3:12-24.
[3]  Trent B C, Langland R T.对煤地下气化所致沉陷的模拟[J].矿业译丛,1985,3:34-48.
[4]  Stephenson D E, Dass S T, Shaw D E.煤地下气化所致沉陷(计及热影响)的数值模拟[J].矿业译丛,1985,3:25-33.
[5]  张连英, 卢文厅, 茅献彪. 高温作用下砂岩力学性能实验[J]. 采矿与安全工程学报, 2007, 24(3): 293-297.
[6]  Ali Akbar Eftekhari, Hedzer Van Der Kooi, Hans Bruining. Exergy analysis of underground coal gasification with simultaneous storage of carbon dioxide. Energy,2012,45:729-745.
[7]  左建平,周宏伟,谢和平,不同温度影响下砂岩的断裂特性研究[J].工程力 学,2008,25(5),124-130.
[8]  Sateesh Daggupati, Ramesh N. Mandapati, Sanjay M. Mahajani, Anuradda Ganesh, D.K. Mathur, R.K. Sharma, Preeti Aghalayam. Laboratory studies on combustion cavity growth in lignite coal blocks in the context of underground coal gasification. Energy,2010,35:2374-2386.
[9]  Mackinnon R J, Carey G F.Moving-grid finite element modeling of thermal ablation and consolidation in porous media[J].International Journal for Numerical Methods in Engineering, 1993,36(5):717-744.
[10]  Mackinnon R J, Carey G F.Moving-grid finite element modeling of thermal ablation and consolidation in porous media[J].International Journal for Numerical Methods in Engineering, 1993,36(5):717-744.
[11]  Younger P L. Hydrogeological and geomechanical aspects of underground coal gasification and its direct coupling to carbon capture and storage[J]. Mine Water Environ, 2011,30:127–140.
[12]  Sateesh Daggupati, Ramesh N. Mandapati, Sanjay M. Mahajani, Anuradda Ganesh, D.K. Mathur, R.K. Sharma, Preeti Aghalayam. Laboratory studies on combustion cavity growth in lignite coal blocks in the context of underground coal gasification. Energy,2010,35:2374-2386.
[13]  Trent B C, Langland R T.对煤地下气化所致沉陷的模拟[J].矿业译丛,1985,3:34-48.
[14]  Stephenson D E, Dass S T, Shaw D E.煤地下气化所致沉陷(计及热影响)的数值模拟[J].矿业译丛,1985,3:25-33.
[15]  Yang T, Thomas L.Structural mechanics simulations associated with UCG [Ph D Thesis]. USA: The Graduate School of West Virginia University,1978.
[16]  张连英, 卢文厅, 茅献彪. 高温作用下砂岩力学性能实验[J]. 采矿与安全工程学报, 2007, 24(3): 293-297.
[17]  吴忠,秦本东,谌论建,罗运军. 煤层顶板砂岩高温状态下力学特征试验研究[J]. 岩石力学与工程学报. 2005,24(11):1863-1867.
[18]  Luo J A, Wang L G, Tang F R etc. Variation in the temperature field of rocks overlying a high-temperature cavity during underground coal gasification[J]. Mining Science and Technology, 2011, 21(5): 709-713.
[19]  Yang T, Thomas L.Structural mechanics simulations associated with UCG [Ph D Thesis]. USA: The Graduate School of West Virginia University,1978.
[20]  谭启. 弹性与非线性状态下层状岩石高温热应力场数值对比分析[J]. 矿业研究与开发. 2011,31(3):58-61.
[21]  Younger P L. Hydrogeological and geomechanical aspects of underground coal gasification and its direct coupling to carbon capture and storage[J]. Mine Water Environ, 2011,30:127–140.
[22]  左建平,周宏伟,谢和平,不同温度影响下砂岩的断裂特性研究[J].工程力 学,2008,25(5),124-130.
[23]  Evans U J, Thompson W T.煤地下气化过程中温度和非弹性特性对顶板塌落和地表沉陷的影响[J].矿业译丛,1985,3:12-24.
[24]  Stephenson D E, Dass S T, Shaw D E.煤地下气化所致沉陷(计及热影响)的数值模拟[J].矿业译丛,1985,3:25-33.
[25]  吴忠,秦本东,谌论建,罗运军. 煤层顶板砂岩高温状态下力学特征试验研究[J]. 岩石力学与工程学报. 2005,24(11):1863-1867.
[26]  Mackinnon R J, Carey G F.Moving-grid finite element modeling of thermal ablation and consolidation in porous media[J].International Journal for Numerical Methods in Engineering, 1993,36(5):717-744.
[27]  Luo J A, Wang L G, Tang F R etc. Variation in the temperature field of rocks overlying a high-temperature cavity during underground coal gasification[J]. Mining Science and Technology, 2011, 21(5): 709-713.,
[28]  Krzysztof Kapusta, Krzysztof Stan′ czyk. Pollution of water during underground coal gasification of hard coal and lignite. 2011,Fuel,90:1927–1934.
[29]  Lanhe Yang,_, Xing Zhang, Shuqin Liu, Li Yu , Weilian Zhang. Field test of large-scale hydrogen manufacturing from underground coal gasification (UCG). International Journal of Hydrogen Energy,2008,33:1275 – 1285.
[30]  Evans U J, Thompson W T.煤地下气化过程中温度和非弹性特性对顶板塌落和地表沉陷的影响[J].矿业译丛,1985,3:12-24.
[31]  Trent B C, Langland R T.对煤地下气化所致沉陷的模拟[J].矿业译丛,1985,3:34-48.
[32]  Yang T, Thomas L.Structural mechanics simulations associated with UCG [Ph D Thesis]. USA: The Graduate School of West Virginia University,1978.
[33]  谭启. 弹性与非线性状态下层状岩石高温热应力场数值对比分析[J]. 矿业研究与开发. 2011,31(3):58-61.
[34]  张连英, 卢文厅, 茅献彪. 高温作用下砂岩力学性能实验[J]. 采矿与安全工程学报, 2007, 24(3): 293-297.
[35]  左建平,周宏伟,谢和平,不同温度影响下砂岩的断裂特性研究[J].工程力 学,2008,25(5),124-130.
[36]  吴忠,秦本东,谌论建,罗运军. 煤层顶板砂岩高温状态下力学特征试验研究[J]. 岩石力学与工程学报. 2005,24(11):1863-1867.
[37]  吴忠,秦本东,谌论建,罗运军. 煤层顶板砂岩高温状态下力学特征试验研究[J]. 岩石力学与工程学报. 2005,24(11):1863-1867.
[38]  Younger P L. Hydrogeological and geomechanical aspects of underground coal gasification and its direct coupling to carbon capture and storage[J]. Mine Water Environ, 2011,30:127–140.
[39]  左建平,周宏伟,谢和平,不同温度影响下砂岩的断裂特性研究[J].工程力 学,2008,25(5),124-130.
[40]  Luo J A, Wang L G, Tang F R etc. Variation in the temperature field of rocks overlying a high-temperature cavity during underground coal gasification[J]. Mining Science and Technology, 2011, 21(5): 709-713.,
[41]  Evans U J, Thompson W T.煤地下气化过程中温度和非弹性特性对顶板塌落和地表沉陷的影响[J].矿业译丛,1985,3:12-24.
[42]  谭启. 弹性与非线性状态下层状岩石高温热应力场数值对比分析[J]. 矿业研究与开发. 2011,31(3):58-61.
[43]  Younger P L. Hydrogeological and geomechanical aspects of underground coal gasification and its direct coupling to carbon capture and storage[J]. Mine Water Environ, 2011,30:127–140.
[44]  Luo J A, Wang L G, Tang F R etc. Variation in the temperature field of rocks overlying a high-temperature cavity during underground coal gasification[J]. Mining Science and Technology, 2011, 21(5): 709-713.,
[45]  Lanhe Yang,_, Xing Zhang, Shuqin Liu, Li Yu , Weilian Zhang. Field test of large-scale hydrogen manufacturing from underground coal gasification (UCG). International Journal of Hydrogen Energy,2008,33:1275 – 1285.
[46]  吴忠,秦本东,谌论建,罗运军. 煤层顶板砂岩高温状态下力学特征试验研究[J]. 岩石力学与工程学报. 2005,24(11):1863-1867.
[47]  Stephenson D E, Dass S T, Shaw D E.煤地下气化所致沉陷(计及热影响)的数值模拟[J].矿业译丛,1985,3:25-33.
[48]  Krzysztof Kapusta, Krzysztof Stan′ czyk. Pollution of water during underground coal gasification of hard coal and lignite. 2011,Fuel,90:1927–1934.
[49]  Ali Akbar Eftekhari, Hedzer Van Der Kooi, Hans Bruining. Exergy analysis of underground coal gasification with simultaneous storage of carbon dioxide. Energy,2012,45:729-745.
[50]  Lanhe Yang,_, Xing Zhang, Shuqin Liu, Li Yu , Weilian Zhang. Field test of large-scale hydrogen manufacturing from underground coal gasification (UCG). International Journal of Hydrogen Energy,2008,33:1275 – 1285.
[51]  Krzysztof Kapusta, Krzysztof Stan′ czyk. Pollution of water during underground coal gasification of hard coal and lignite. 2011,Fuel,90:1927–1934.
[52]  左建平,周宏伟,谢和平,不同温度影响下砂岩的断裂特性研究[J].工程力 学,2008,25(5),124-130.
[53]  Luo J A, Wang L G, Tang F R etc. Variation in the temperature field of rocks overlying a high-temperature cavity during underground coal gasification[J]. Mining Science and Technology, 2011, 21(5): 709-713.
[54]  Lanhe Yang,_, Xing Zhang, Shuqin Liu, Li Yu , Weilian Zhang. Field test of large-scale hydrogen manufacturing from underground coal gasification (UCG). International Journal of Hydrogen Energy,2008,33:1275 – 1285.
[55]  Sateesh Daggupati, Ramesh N. Mandapati, Sanjay M. Mahajani, Anuradda Ganesh, D.K. Mathur, R.K. Sharma, Preeti Aghalayam. Laboratory studies on combustion cavity growth in lignite coal blocks in the context of underground coal gasification. Energy,2010,35:2374-2386.
[56]  Trent B C, Langland R T.对煤地下气化所致沉陷的模拟[J].矿业译丛,1985,3:34-48.
[57]  Yang T, Thomas L.Structural mechanics simulations associated with UCG [Ph D Thesis]. USA: The Graduate School of West Virginia University,1978.
[58]  Ali Akbar Eftekhari, Hedzer Van Der Kooi, Hans Bruining. Exergy analysis of underground coal gasification with simultaneous storage of carbon dioxide. Energy,2012,45:729-745.
[59]  Mackinnon R J, Carey G F.Moving-grid finite element modeling of thermal ablation and consolidation in porous media[J].International Journal for Numerical Methods in Engineering, 1993,36(5):717-744.
[60]  谭启. 弹性与非线性状态下层状岩石高温热应力场数值对比分析[J]. 矿业研究与开发. 2011,31(3):58-61.
[61]  张连英, 卢文厅, 茅献彪. 高温作用下砂岩力学性能实验[J]. 采矿与安全工程学报, 2007, 24(3): 293-297.
[62]  Krzysztof Kapusta, Krzysztof Stan′ czyk. Pollution of water during underground coal gasification of hard coal and lignite. 2011,Fuel,90:1927–1934.
[63]  Ali Akbar Eftekhari, Hedzer Van Der Kooi, Hans Bruining. Exergy analysis of underground coal gasification with simultaneous storage of carbon dioxide. Energy,2012,45:729-745.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133