全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

预期关联规则集及其基数的定量分析

, PP. 402-407

Keywords: 关联规则,预期关联规则,0支持度,膨胀算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

给定数据库,在不考虑支持度和可信度情况下,事先能否预知最终会挖掘出多少条关联规则,这是个值得研究的问题。为此文中提出预期关联规则的概念,使上述问题转化成为如何计算预期关联规则集基数的问题。分别给出布尔型和数量型两种情况下的计算公式。对于数量型数据集,讨论当转换为布尔型数据后各个项集元素呈现的互斥性质。利用此性质导出一个膨胀矩阵和膨胀算法。该方法相对简洁地解决数量型数据集预期关联规则集基数的计算问题。计算和测试结果都表明,预期关联规则总量随着互斥元素的增加呈现下降趋势。这些结果对于深刻理解关联规则挖掘的实质,进而研发更加高效的挖掘算法十分有益。

References

[1]  Agrawal R, Imieliski T, Swami A. Mining Association Rule between Sets of Items in Large Database // Proc of the ACM SIGMOD International Conference on Management of Data. Washington, USA, 1993: 207-216
[2]  Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules // Proc of the 20th International Conference on Very Large Databases. Santiago de Chile, USA, 1994: 478-499
[3]  Pasquier N, Bastide Y, Taouil R, et al. Efficient Mining of Association Rules Using Closed Itemset Lattices. Information Systems, 1999, 24(1): 25-46
[4]  Cheung D W, Ng N T, Fu A W, et al. Efficient Mining of Association Rules in Distributed Databases. IEEE Trans on Knowledge and Data Engineering, 1996, 8(6): 911-922
[5]  Wile R. Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts // Rival I, ed. Ordered Sets. Dordrecht, Netherlands: Reidel, 1982: 445-470
[6]  Mao Guojun, Liu Chunnian. Mining of Association Rules Based on the Operators of Set of Item Sequences. Chinese Journal of Computers, 2002, 25(4): 417-422 (in Chinese)(毛国君,刘椿年.基于项目序列集操作的关联规则挖掘算法.计算机学报, 2002, 25(4): 417-422)
[7]  Han Jiawei, Pei Jian, Yin Yiwen. Mining Frequent Patterns without Candidate Generation. ACM SIGMOD Record, 2000, 29(2): 1-12
[8]  Yuan Yubo, Huang Tingzhu. A Matrix Algorithm for Mining Association Rules // Proc of the International Conference on Intelligence Computing. Hefei, China, 2005: 370-379
[9]  Zhang Jin, Zhang Xiaogan. Data Mining Algorithm and Engineering Applications. Beijing, China: China Machine Press, 2007 (in Chinese)(章 兢,张小刚.数据挖掘算法及其工程应用.北京:机械工业出版社, 2007)
[10]  Cohen E, Datar M, Fujiwara S. Finding Interesting Associations without Support Pruning. IEEE Trans on Knowledge and Data Engineering, 2001, 13(1): 64-78
[11]  Chen An, Chen Ning, Zhou Longxiang. Data Mining Technology and Applications. Beijing, China: Science Press, 2007 (in Chinese)(陈 安,陈 宁,周龙骧.数据挖掘技术及应用.北京:科学出版社, 2007)
[12]  Zhu Yuquan, Yang Hebiao, Sun Lei. Data Mining Technology. Nanjing, China: Southeast University Press, 2006 (in Chinese)(朱玉全,杨鹤标,孙 蕾.数据挖掘技术.南京:东南大学出版社, 2006)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133