全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于视觉词典的单目视觉闭环检测算法

, PP. 561-570

Keywords: 单目视觉同步定位与地图构建,闭环检测,视觉词典,混合高斯模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对移动机器人单目视觉同步定位与地图构建中的闭环检测问题,文中设计一种基于视觉词典的闭环检测算法。算法对采集的每帧图像通过SURF进行特征提取,应用模糊K均值算法对检测的视觉特征向量进行分类,在线构建表征图像的视觉词典。为精确表征局部视觉特征与视觉单词间的相似关联,利用混合高斯模型建立视觉词典中的每一视觉单词的概率模型,实现图像基于视觉词典的概率向量表示,通过向量的内积来计算图像间的相似度。为保证闭环检测的成功率,应用贝叶斯滤波融合历史闭环检测与相似度信息来计算闭环假设的后验概率分布。另外,引入浅层记忆与深度记忆两种内存管理机制来保证算法执行的快速性。实验结果证明该方法的有效性。

References

[1]  Civera J,Davison A,Montiel M. Inverse Depth Parametrization for Monocular SLAM. IEEE Trans on Robotics,2008,24(5): 932-945
[2]  Civera J,Davison A,Grasa O G,et al. 1-Point RANSAC for EKF-Based Structure from Motion // Proc of the IEEE International Conference on Intelligent Robots and Systems. St Louis,USA,2009: 3498-3504
[3]  Cummins M,Newman P. FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance. The International Journal of Robotics Research,2008,27(6): 647-665
[4]  Folkesson J,Christensen H. Closing the Loop with Graphical SLAM. IEEE Trans on Robotics,2007,23(4): 731-741
[5]  Wen L,Ray J. A Pure Vision-Based Topological SLAM System. The International Journal of Robotics Research,2012,31(4): 403-428
[6]  Williams B,Cummins M. An Image-to-Map Loop Closing Method for Monocular SLAM // Proc of the IEEE International Conference on Intelligent Robots and Systems. Nice,France,2008: 2053-2059
[7]  Cummins M,Newman P. Appearance-Only SLAM at Large Scale with FAB-MAP 2.0. The International Journal of Robotics Research,2011,30(9): 1100-1123
[8]  Botterill T,Mill S,Green R. Bags-of-Words-Driven,Single Camera Simultaneous Localization and Mapping. Journal of Field Robotics,2011,28(2): 204-226
[9]  Angeli A,Filliat D,Doncieux S,et al. Fast and Incremental Method for Loop-Closure Detection Using Bags of Visual Words.IEEE Trans on Robotics,2008,24(5): 1027-1037
[10]  Cummins M,Newman P. Accelerating FAB-MAP with Concentration Inequalities. IEEE Trans on Robotics,2010,26(6): 1042-1050
[11]  Labbe M,Michaud F. Memory Management for Real-Time Appearance-Based Loop Closure Detection // Proc of the IEEE International Conference on Intelligent Robots and Systems. San Francisco,USA,2011: 1271-1276
[12]  Bay H,Ess A,Tuytelaars T,et al. Speeded Up Robust Features (SURF). Computer Vision and Image Understanding,2008,110(3): 346-359
[13]  Jurie F,Triggs B. Creating Efficient Codebooks for Visual Recognition // Proc of the 10th IEEE International Conference on Computer Vision. Beijing,China,2005: 604-610
[14]  Nister D,Stewenius H. Scalable Recognition with a Vocabulary Tree // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. New York,USA,2006,Ⅱ: 2161-2168
[15]  Moosmann F,Tiggs B,Jurie F. Randomized Clustering Forest for Building Fast and Discriminative Visual Vocabularies // Proc of the Conference on Neural Information Processing System. Vancouver,Canada,2006: 1120-1126
[16]  Hu W M,Xie D,Tan T N,et al. Learning Patterns of Activity Using Fuzzy Self-Organizing Neural Network. IEEE Trans on System,Man and Cybernetics,2004,34(3): 1618-1626
[17]  Rabiner L R. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proc of the IEEE,1989,77(2): 257-286
[18]  Xie X,Beni G. A Validity Measure for Fuzzy Clustering. IEEE Trans on Pattern Analysis and Machine Intelligence,1991,13(8): 841-847
[19]  Nister D,Naroditsky O,Bergen J. Visual Odometry for Ground Vehicle Applications. Journal of Field Robotics,2006,23(1): 3-20
[20]  Giorgio G,Cyrill S,Wolfram B. Non-Linear Constraint Network Optimization for Efficient Map Learning. IEEE Trans on Intelligent Transportation Systems,2009,10(3): 428-439

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133